Algebraic Geometry Problems

Universal assumption: k is a field. All rings are commutative with 1.

- 1. Show that
 - If $I \subset J \subset k[x_1, \dots, x_n]$ then $V(J) \subset V(I)$
 - $V(\sum I_{\alpha}) = \bigcup V(I_{\alpha})$ for any family of ideals $I_{\alpha} \subset k[x_1, \dots, x_n]$.
 - If $X \subset Y \subset \mathbb{A}^n$ then $I(Y) \subset I(X)$.
 - $I(X \cup Y) = I(X) \cap I(Y).$
- 2. Show that X is closed and find I(X) if
 - $X = \{(0,1), (1,0)\} \subset \mathbb{A}^2.$
 - $X = \{(t, t^2, t^3) \mid t \in k\} \subset \mathbb{A}^3$
 - X is the union of the x-axis and the yz-plane in \mathbb{A}^3 .
- 3. Show that an algebraically closed field is infinite.
- 4. Find $\sqrt{(y^2 x^3, x^2 + y)} \subset k[x, y]$
- 5. The Noether Normalisation theorem is the following: Let A be a finitely generated ring over the field k. Then there exist algebraically independent elements $x_1, \ldots, x_d \in A$ such that A is a finitely generated $k[x_1, \ldots, x_n]$ -module.

Prove the Noether normalisation theorem when k is an infinite field. Here is one strategy

- Show that we can find generators x_1, \ldots, x_n of A ordered in such a way that x_1, \ldots, x_d are algebraically independent, and x_{d+1}, \ldots, x_n are all algebraic over $k[x_1, \ldots, x_d]$.
- Show that after making a linear change of variables, we can ensure that each of x_{d+1}, \ldots, x_n is the root of a monic polynomial with coefficients in $k[x_1, \ldots, x_d]$.
- Deduce Noether normalisation.

Bonus: Can you work out how to modify the second step when k is finite?

- 6. Let k be an infinite field and $f(x_1, \ldots, x_n)$ be a nonzero polynomial in n variables. Prove that there exists $a_1, \ldots, a_n \in k$ such that $f(a_1, \ldots, a_n) \neq 0$.
- 7. Let $R \to S$ be a ring homomorphism. The following are equivalent
 - $R \to S$ is finite,
 - $R \to S$ is integral and of finite type,
 - there exist $x_1, \ldots x_n \in S$ which generate S as an algebra over S such that each x_i is integral over R.

- 8. Prove the weak Nullstellensatz. This is the statement that if I is a proper ideal of $k[x_1, \ldots, x_n]$ then $V(I) \neq \emptyset$. Hint, use Noether normalisation.
- 9. Prove the Nullstellensatz. Hint: The hard part is to show that $I(V(J)) \subset \sqrt{J}$. Let $J = (g_1, \ldots, g_m)$ and suppose $f \in I(V(J))$. Move up one dimension and consider the ideal $J' = (g_1, \ldots, g_m, ft 1) \subset k[x_1, \ldots, x_n, t]$. Apply the weak Nullstellensatz to obtain an equation writing 1 as a combination of the g_i and ft 1, then make a substitution t = 1/f.
- 10. Let $X \subset \mathbb{P}^n$ be a closed subvariety, and f a non-constant homogeneous element of the projective coordinate ring $R = k[x_0, x_1, \dots, x_n]/I(X)$. Prove that $D_+(f) = \{x \in X \mid f(x) \neq 0\}$ is an open affine subvariety of X with coordinate ring $R_{(f)}$ (the degree zero elements of R[1/f]).
- 11. Let $n, d \geq 1$ be integers. Consider the map $\phi_{n,d} : \mathbb{P}^n \longrightarrow \mathbb{P}^N$, called the Veronese embedding, given by

$$\phi_{n,d}([x_0:x_1:\cdots:x_n]) = [\underline{x}^{\underline{i}}]_{|\underline{i}|=d}.$$

Show that

- $N = \binom{d+n}{n} 1.$
- The image is equal to the zero locus of the ideal generated by the quadratic equations $z_{\underline{i}}z_{j} = z_{\underline{k}}z_{\underline{l}}$ where $\underline{i} + j = \underline{k} + \underline{l}$.
- $\phi_{n,d}$ is a homeomorphism onto its image.
- 12. The Cayley-Hamilton theorem says the following: Let A be a $n \times n$ matrix with entries in k. Let $P_A(t) = \det(tI - A)$ be its characteristic polynomial. Then $P_A(A) =$ 0. Prove the Cayley-Hamilton theorem in the following way: Show that the xet of diagonalisable matrices contains a Zariski open subset $U \subset \operatorname{Mat}(n, k)$ of matrices with n distinct eigenvalues. Consider the regular function $P_A(A)$ on $\operatorname{Mat}(n, k)$ and show that it is identically zero on U. Conclude that it is identically zero on $\operatorname{Mat}(n, k)$.
- 13. Suppose the characteristic of k is not three. Find all singular points on the Fermat surface $X_0^3 + X_1^3 + X_2^3 + X_3^3$ in \mathbb{P}^3 .
- 14. Consider the plane curve $y^2 = x^3 + Ax + B$. Find conditions on A and B such that this curve is nonsingular. Show that it has a unique point at infinity in \mathbb{P}^2 and check that this is always a smooth point.
- 15. Let $n \ge 4$ be an integer and $a_1, \ldots, a_n \in k$. Show that the plane curve $y^2 = (x-a_1)(x-a_2)\cdots(x-a_n)$ has a unique point at infinity and that it is not a smooth point.
- 16. Write A, B, C, D, E, F for the coordinates in \mathbb{P}^5 . Find the set of singular points on V(AB CD + EF, F). (This is a Schubert variety in the Grassmannian Gr(2, 4), consisting of all planes that meet a fixed plane in more than a point).

17. A set is locally closed if it is the intersection of a closed subset with an open subset. A set is constructible if it is the union of a finite number of locally closed subsets. Chevalley's Theorem states that if $f: X \to Y$ is a morphism of algebraic varieties (over an algebraically closed field, though there are more general scheme theoretic versions), and if C is a constructible subset of X, then f(C) is a constructible subset of Y.

Consider $f: \mathbb{A}^2 \longrightarrow \mathbb{A}^2$, f(x, y) = (x, xy). Show that $f(\mathbb{A}^2)$ is not closed, not open, but is constructible.

- 18. Let R be an integral domain and K its field of fractions. Let $f \in R[t]$. If f can be factored in K[t], show that there is a nonzero $r \in R$ such that rf can be factored in R[t].
- 19. Let Y be an irreducible variety and $\pi: Y \times \mathbb{A}^1 \longrightarrow Y$ be the projection onto the first factor. Let C be a constructible subset of $Y \times \mathbb{A}^1$. Show that if $\pi(C)$ is dense in Y then $\pi(C)$ contains an open subset of Y.

Hints:

- First reduce to the case where C is the intersection of an open and a closed subset
- Let R be the ring of regular functions on Y. Consider first the case where C is given by $f(t) = 0, g(t) \neq 0$ for some $f(t), g(t) \in R[t]$ which have no common factor in K[t]. Your open subset could be the subset of Y where a leading coefficient does not vanish and a resultant does not vanish.
- Now consider the case where f(t) and g(t) have a greatest common factor d(t) in K[t]. Use the result of the previous problem to show that we can lift this factorisation to R[t] at the cost of passing to an open subset of Y. Replace f(t) by f(t)/d(t) and declare victory by induction on the degree of f.
- In general, C is given by $f_1(t) = \cdots = f_r(t) = 0$, $g(t) \neq 0$ (why?). Again at the cost of passing to an open subset of Y, replace f_1, \ldots, f_r by their greatest common divisor in K[t] to reduce to the previous case.
- 20. Prove Chevalley's theorem (hint: it can be reduced to Problem 19).