Algebraic Geometry Problems

Universal assumption: k is a field. All rings are commutative with 1.

1. Show that

- If $I \subset J \subset k\left[x_{1}, \ldots, x_{n}\right]$ then $V(J) \subset V(I)$
- $V\left(\sum I_{\alpha}\right)=\cup V\left(I_{\alpha}\right)$ for any family of ideals $I_{\alpha} \subset k\left[x_{1}, \ldots, x_{n}\right]$.
- If $X \subset Y \subset \mathbb{A}^{n}$ then $I(Y) \subset I(X)$.
- $I(X \cup Y)=I(X) \cap I(Y)$.

2. Show that X is closed and find $I(X)$ if

- $X=\{(0,1),(1,0)\} \subset \mathbb{A}^{2}$.
- $X=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in k\right\} \subset \mathbb{A}^{3}$
- X is the union of the x-axis and the $y z$-plane in \mathbb{A}^{3}.

3. Show that an algebraically closed field is infinite.
4. Find $\sqrt{\left(y^{2}-x^{3}, x^{2}+y\right)} \subset k[x, y]$
5. The Noether Normalisation theorem is the following: Let A be a finitely generated ring over the field k. Then there exist algebraically independent elements $x_{1}, \ldots, x_{d} \in A$ such that A is a finitely generated $k\left[x_{1}, \ldots, x_{n}\right]$-module.
Prove the Noether normalisation theorem when k is an infinite field. Here is one strategy

- Show that we can find generators x_{1}, \ldots, x_{n} of A ordered in such a way that x_{1}, \ldots, x_{d} are algebraically independent, and x_{d+1}, \ldots, x_{n} are all algebraic over $k\left[x_{1}, \ldots, x_{d}\right]$.
- Show that after making a linear change of variables, we can ensure that each of x_{d+1}, \ldots, x_{n} is the root of a monic polynomial with coefficients in $k\left[x_{1}, \ldots, x_{d}\right]$.
- Deduce Noether normalisation.

Bonus: Can you work out how to modify the second step when k is finite?
6. Let k be an infinite field and $f\left(x_{1}, \ldots, x_{n}\right)$ be a nonzero polynomial in n variables. Prove that there exists $a_{1}, \ldots, a_{n} \in k$ such that $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$.
7. Let $R \rightarrow S$ be a ring homomorphism. The following are equivalent

- $R \rightarrow S$ is finite,
- $R \rightarrow S$ is integral and of finite type,
- there exist $x_{1}, \ldots x_{n} \in S$ which generate S as an algebra over S such that each x_{i} is integral over R.

8. Prove the weak Nullstellensatz. This is the statement that if I is a proper ideal of $k\left[x_{1}, \ldots, x_{n}\right]$ then $V(I) \neq \emptyset$. Hint, use Noether normalisation.
9. Prove the Nullstellensatz. Hint: The hard part is to show that $I(V(J)) \subset \sqrt{J}$. Let $J=\left(g_{1}, \ldots, g_{m}\right)$ and suppose $f \in I(V(J))$. Move up one dimension and consider the ideal $J^{\prime}=\left(g_{1}, \ldots, g_{m}, f t-1\right) \subset k\left[x_{1}, \ldots, x_{n}, t\right]$. Apply the weak Nullstellensatz to obtain an equation writing 1 as a combination of the g_{i} and $f t-1$, then make a substitution $t=1 / f$.
10. Let $X \subset \mathbb{P}^{n}$ be a closed subvariety, and f a non-constant homogeneous element of the projective coordinate ring $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right] / I(X)$. Prove that $D_{+}(f)=$ $\{x \in X \mid f(x) \neq 0\}$ is an open affine subvariety of X with coordinate ring $R_{(f)}$ (the degree zero elements of $R[1 / f])$.
11. Let $n, d \geq 1$ be integers. Consider the map $\phi_{n, d}: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{N}$, called the Veronese embedding, given by

$$
\phi_{n, d}\left(\left[x_{0}: x_{1}: \cdots: x_{n}\right]\right)=[\underline{x} \underline{\underline{i}}]_{|\underline{i}|=d} .
$$

Show that

- $N=\binom{d+n}{n}-1$.
- The image is equal to the zero locus of the ideal generated by the quadratic equations $z_{\underline{i}} z_{j}=z_{\underline{k}} z_{\underline{l}}$ where $\underline{i}+\underline{j}=\underline{k}+\underline{l}$.
- $\phi_{n, d}$ is a homeomorphism onto its image.

12. The Cayley-Hamilton theorem says the following: Let A be a $n \times n$ matrix with entries in k. Let $P_{A}(t)=\operatorname{det}(t I-A)$ be its characteristic polynomial. Then $P_{A}(A)=$ 0 . Prove the Cayley-Hamilton theorem in the following way: Show that the xet of diagonalisable matrices contains a Zariski open subset $U \subset \operatorname{Mat}(n, k)$ of matrices with n distinct eigenvalues. Consider the regular function $P_{A}(A)$ on $\operatorname{Mat}(n, k)$ and show that it is identically zero on U. Conclude that it is identically zero on $\operatorname{Mat}(n, k)$.
13. Suppose the characteristic of k is not three. Find all singular points on the Fermat surface $X_{0}^{3}+X_{1}^{3}+X_{2}^{3}+X_{3}^{3}$ in \mathbb{P}^{3}.
14. Consider the plane curve $y^{2}=x^{3}+A x+B$. Find conditions on A and B such that this curve is nonsingular. Show that it has a unique point at infinity in \mathbb{P}^{2} and check that this is always a smooth point.
15. Let $n \geq 4$ be an integer and $a_{1}, \ldots, a_{n} \in k$. Show that the plane curve $y^{2}=$ $\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)$ has a unique point at infinity and that it is not a smooth point.
16. Write A, B, C, D, E, F for the coordinates in \mathbb{P}^{5}. Find the set of singular points on $V(A B-C D+E F, F)$. (This is a Schubert variety in the Grassmannian $\operatorname{Gr}(2,4)$, consisting of all planes that meet a fixed plane in more than a point).
17. A set is locally closed if it is the intersection of a closed subset with an open subset. A set is constructible if it is the union of a finite number of locally closed subsets. Chevalley's Theorem states that if $f: X \rightarrow Y$ is a morphism of algebraic varieties (over an algebraically closed field, though there are more general scheme theoretic versions), and if C is a constructible subset of X, then $f(C)$ is a constructible subset of Y.
Consider $f: \mathbb{A}^{2} \longrightarrow \mathbb{A}^{2}, f(x, y)=(x, x y)$. Show that $f\left(\mathbb{A}^{2}\right)$ is not closed, not open, but is constructible.
18. Let R be an integral domain and K its field of fractions. Let $f \in R[t]$. If f can be factored in $K[t]$, show that there is a nonzero $r \in R$ such that $r f$ can be factored in $R[t]$.
19. Let Y be an irreducible variety and $\pi: Y \times \mathbb{A}^{1} \longrightarrow Y$ be the projection onto the first factor. Let C be a constructible subset of $Y \times \mathbb{A}^{1}$. Show that if $\pi(C)$ is dense in Y then $\pi(C)$ contains an open subset of Y.
Hints:

- First reduce to the case where C is the intersection of an open and a closed subset
- Let R be the ring of regular functions on Y. Consider first the case where C is given by $f(t)=0, g(t) \neq 0$ for some $f(t), g(t) \in R[t]$ which have no common factor in $K[t]$. Your open subset could be the subset of Y where a leading coefficient does not vanish and a resultant does not vanish.
- Now consider the case where $f(t)$ and $g(t)$ have a greatest common factor $d(t)$ in $K[t]$. Use the result of the previous problem to show that we can lift this factorisation to $R[t]$ at the cost of passing to an open subset of Y. Replace $f(t)$ by $f(t) / d(t)$ and declare victory by induction on the degree of f.
- In general, C is given by $f_{1}(t)=\cdots=f_{r}(t)=0, g(t) \neq 0$ (why?). Again at the cost of passing to an open subset of Y, replace f_{1}, \ldots, f_{r} by their greatest common divisor in $K[t]$ to reduce to the previous case.

20. Prove Chevalley's theorem (hint: it can be reduced to Problem 19).
