
Algebraic Geometry Problems

Universal assumption: k is a field. All rings are commutative with 1.

1. Show that

• If I ⊂ J ⊂ k[x1, . . . , xn] then V (J) ⊂ V (I)

• V (
∑
Iα) = ∪V (Iα) for any family of ideals Iα ⊂ k[x1, . . . , xn].

• If X ⊂ Y ⊂ An then I(Y ) ⊂ I(X).

• I(X ∪ Y ) = I(X) ∩ I(Y ).

2. Show that X is closed and find I(X) if

• X = {(0, 1), (1, 0)} ⊂ A2.

• X = {(t, t2, t3) | t ∈ k} ⊂ A3

• X is the union of the x-axis and the yz-plane in A3.

3. Show that an algebraically closed field is infinite.

4. Find
√

(y2 − x3, x2 + y) ⊂ k[x, y]

5. The Noether Normalisation theorem is the following: Let A be a finitely gener-
ated ring over the field k. Then there exist algebraically independent elements
x1, . . . , xd ∈ A such that A is a finitely generated k[x1, . . . , xn]-module.

Prove the Noether normalisation theorem when k is an infinite field. Here is one
strategy

• Show that we can find generators x1, . . . , xn of A ordered in such a way that
x1, . . . , xd are algebraically independent, and xd+1, . . . , xn are all algebraic over
k[x1, . . . , xd].

• Show that after making a linear change of variables, we can ensure that each of
xd+1, . . . , xn is the root of a monic polynomial with coefficients in k[x1, . . . , xd].

• Deduce Noether normalisation.

Bonus: Can you work out how to modify the second step when k is finite?

6. Let k be an infinite field and f(x1, . . . , xn) be a nonzero polynomial in n variables.
Prove that there exists a1, . . . , an ∈ k such that f(a1, . . . , an) 6= 0.

7. Let R→ S be a ring homomorphism. The following are equivalent

• R→ S is finite,

• R→ S is integral and of finite type,

• there exist x1, . . . xn ∈ S which generate S as an algebra over S such that each
xi is integral over R.



8. Prove the weak Nullstellensatz. This is the statement that if I is a proper ideal of
k[x1, . . . , xn] then V (I) 6= ∅. Hint, use Noether normalisation.

9. Prove the Nullstellensatz. Hint: The hard part is to show that I(V (J)) ⊂
√
J . Let

J = (g1, . . . , gm) and suppose f ∈ I(V (J)). Move up one dimension and consider
the ideal J ′ = (g1, . . . , gm, ft − 1) ⊂ k[x1, . . . , xn, t]. Apply the weak Nullstellensatz
to obtain an equation writing 1 as a combination of the gi and ft− 1, then make a
substitution t = 1/f .

10. Let X ⊂ Pn be a closed subvariety, and f a non-constant homogeneous element
of the projective coordinate ring R = k[x0, x1, . . . , xn]/I(X). Prove that D+(f) =
{x ∈ X | f(x) 6= 0} is an open affine subvariety of X with coordinate ring R(f) (the
degree zero elements of R[1/f ]).

11. Let n, d ≥ 1 be integers. Consider the map φn,d :Pn −→ PN , called the Veronese
embedding, given by

φn,d([x0 : x1 : · · · : xn]) = [xi]|i|=d.

Show that

• N =
(
d+n
n

)
− 1.

• The image is equal to the zero locus of the ideal generated by the quadratic
equations zizj = zkzl where i+ j = k + l.

• φn,d is a homeomorphism onto its image.

12. The Cayley-Hamilton theorem says the following: Let A be a n × n matrix with
entries in k. Let PA(t) = det(tI−A) be its characteristic polynomial. Then PA(A) =
0. Prove the Cayley-Hamilton theorem in the following way: Show that the xet of
diagonalisable matrices contains a Zariski open subset U ⊂ Mat(n, k) of matrices
with n distinct eigenvalues. Consider the regular function PA(A) on Mat(n, k)
and show that it is identically zero on U . Conclude that it is identically zero on
Mat(n, k).

13. Suppose the characteristic of k is not three. Find all singular points on the Fermat
surface X3

0 +X3
1 +X3

2 +X3
3 in P3.

14. Consider the plane curve y2 = x3 +Ax+B. Find conditions on A and B such that
this curve is nonsingular. Show that it has a unique point at infinity in P2 and check
that this is always a smooth point.

15. Let n ≥ 4 be an integer and a1, . . . , an ∈ k. Show that the plane curve y2 =
(x−a1)(x−a2) · · · (x−an) has a unique point at infinity and that it is not a smooth
point.

16. Write A,B,C,D,E, F for the coordinates in P5. Find the set of singular points on
V (AB − CD + EF, F ). (This is a Schubert variety in the Grassmannian Gr(2, 4),
consisting of all planes that meet a fixed plane in more than a point).



17. A set is locally closed if it is the intersection of a closed subset with an open subset.
A set is constructible if it is the union of a finite number of locally closed subsets.
Chevalley’s Theorem states that if f : X → Y is a morphism of algebraic varieties
(over an algebraically closed field, though there are more general scheme theoretic
versions), and if C is a constructible subset of X, then f(C) is a constructible subset
of Y .

Consider f :A2−→A2, f(x, y) = (x, xy). Show that f(A2) is not closed, not open,
but is constructible.

18. Let R be an integral domain and K its field of fractions. Let f ∈ R[t]. If f can be
factored in K[t], show that there is a nonzero r ∈ R such that rf can be factored
in R[t].

19. Let Y be an irreducible variety and π :Y ×A1−→Y be the projection onto the first
factor. Let C be a constructible subset of Y ×A1. Show that if π(C) is dense in Y
then π(C) contains an open subset of Y .

Hints:

• First reduce to the case where C is the intersection of an open and a closed
subset

• Let R be the ring of regular functions on Y . Consider first the case where C
is given by f(t) = 0, g(t) 6= 0 for some f(t), g(t) ∈ R[t] which have no common
factor in K[t]. Your open subset could be the subset of Y where a leading
coefficient does not vanish and a resultant does not vanish.

• Now consider the case where f(t) and g(t) have a greatest common factor d(t)
in K[t]. Use the result of the previous problem to show that we can lift this
factorisation to R[t] at the cost of passing to an open subset of Y . Replace
f(t) by f(t)/d(t) and declare victory by induction on the degree of f .

• In general, C is given by f1(t) = · · · = fr(t) = 0, g(t) 6= 0 (why?). Again at
the cost of passing to an open subset of Y , replace f1, . . . , fr by their greatest
common divisor in K[t] to reduce to the previous case.

20. Prove Chevalley’s theorem (hint: it can be reduced to Problem 19).


