
Math 110 HW 3 solutions

May 8, 2013

1. For any positive real number r, prove that xr = O(ex) as functions of x.

Suppose r < 1. Then limx→∞ xr = 0. And limx→∞ ex =∞. Therefore

lim
x→∞

xr

ex
= 0,

which means xr = O(ex).

Now suppose r ≥ 1. Consider the ratio xr

ex , where both numerator and denominator approach

∞ at ∞. Using L’Hôpital’s rule, this limit is the same as that of r · x
r−1

ex . If r − 1 = 0 then
we mean 1/ex, whose limit is 0. If 0 < r < 1 we have reduced to the previous case.

So, for a positive integer n, suppose n ≤ r < n+ 1, then after n iterations of L’Hôpital’s rule,
we conclude that the limit is 0. Thus, xr = O(ex) for all r > 0.

2. Compute the continued fraction expansion of the three numbers 427/67,
√

7 and tan(1). (For
the latter number, you don’t need to prove the result you get is correct, simply do enough com-
putations to be able to guess the pattern (and show how these computations were performed).
Of course 1 is in radians).

First, 67 · 6 = 402, so 427/67 = 6 + 25/67. Now 25 · 2 = 50, so 67/25 = 2 + 17/25, so far we
have

427/67 = 6 +
1

2 + 17
25

.

Similarly 25/17 = 1 + 8/17, and 17/8 = 2 + 1/8, and finally 8/1 = 8. So altogether we have
a terminating continued fraction, with a0 = 6, a1 = 2, a2 = 1, a3 = 2, a4 = 8:

427/67 = 6 +
1

2 + 1
1+ 1

2+1/8

.

For
√

7, let’s start with the approximate decimal expansion. 2.64575131.

Below is a list of decimals where each one is obtained from the last by removing the integer

1



part and taking the reciprocal.

2.64575131106 ≈ 2.64575131106

1/.64575131106 ≈ 1.54858377037

1/.54858377037 ≈ 1.82287565548

1/.82287565548 ≈ 1.2152504371

1/.2152504371 ≈ 4.64575130937

1/.64575130937 ≈ 1.54858377442

and so on. In this way we obtain a0 = 2, a1 = a2 = a3 = 1, a4 = 4, and based on the
similarities in decimal expansions, conjecture that an+4 = an for all n > 0.

We can check this conjecture explicitly. The sequence of numbers above may be written,
taking siginficant figures into account, as

√
7 ≈ 2.64575131106

1√
7− 2

≈ 1.5485837703

1
1√
7−2 − 1

≈ 1.822875655

1
1

1√
7−2
−1 − 1

≈ 1.21525044

1
1

1
1√
7−2
−1
−1 − 1

=
√

7 + 2 (our conjecture).

And rewriting this sequence once more, we get

√
7,

1√
7− 2

,

√
7− 2

3−
√

7
,

3−
√

7

2
√

7− 5
,

2
√

7− 5

8− 3
√

7

So the claim is that the last fraction in that sequence is equal to
√

7 + 2, which is to say

(8− 3
√

7)(
√

7 + 2) = 2
√

7− 5,

which is true. Thus the continued fraction expansion of
√

7 uses the sequence 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, . . ..

For tan(1), let us make a sequence of decimals as above. We get, reducing significant figures
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due to calculator limitations:

tan 1 ≈ 1.55740772465

1/.55740772465 ≈ 1.79401891251

1/.79401891251 ≈ 1.2594158454

1/.25941584545 ≈ 3.854814644

1/.85481464428 ≈ 1.16984425

1/.16984425418 ≈ 5.8877470

1/.88774701168 ≈ 1.126447

1/.12644704724 ≈ 7.90844

1/.90844880784 ≈ 1.1007

1/.10077749166 ≈ 9.922

So we guess that the continued fraction has coefficients 1, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11 . . . in other
words a2n = 1, a2n+1 = 2n + 1. To write it out explicitly we have

1 +
1

1 + 1
1+ 1

3+ 1
1+ 1

5+...

3. In the continued fraction expansion of
√

7 calculated in the previous problem, let n be any
integer such that an+1 = 2a0. Compute the convergent pn

qn
and show that x = pn, y = qn

gives a solution to Pell’s equation x2 − 7y2 = 1.

As we know that means an+1 = 4, which happens when n = 4k − 1 for integer k > 0, and we
always mean an = 1.

Since the a0 = 2 but otherwise a4k = 4, we have the formula for rn+4 = pn+4

qn+4
:

pn+4

qn+4
= 2 +

1

1 + 1
1+ 1

1+ 1
rn+2

=
8rn + 21

3rn + 8

=
8pn + 21qn
3pn + 8qn

.

Calculating explicitly that p3/q3 = 8/3 and p7/q7 = 127/48 we see this does fit the formula.

To write down a closed form for this we would write[
pn+4

qn+4

]
=

[
8 21
3 8

] [
pn
qn

]
and write more explicitly the powers of the 2 × 2 matrix A. But that is not much more
enlightening as it involves for example calculating (8 + 3

√
7)n.
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Suppose (pn, qn) is a solution to Pell’s equation as given, i.e. p2n− 7q2n = 1. Then multiplying
out (8pn + 21qn)2 − 7 · (3pn + 8qn)2, we have 64(p2n − 7q2n) − 63(p2n − 7q2n) = 64 − 63 = 1.
Therefore (pn+4, qn+4) is also a solution to the same Pell’s equation. We proceed by induction:
the pair (p3, q3) = (8, 3) satisfies 82 − 7 · 32 = 1, therefore for all n = 4k − 1, the pair (pn, qn)
is a solution to the Pell’s equation x2 − 7y2 = 1.

4. Let N = 8633243. You compute that 28633242 ≡ 8236849 (mod N). From this information,
what can you conclude about the prime factorisation of N?

We can conclude that N is not prime, because otherwise 2N−1 ≡ 1 (mod N) as N is clearly
not divisible by 2.

5. Let a and n be positive integers with gcd(a;n) = 1. The order of a modulo n (denoted
ordn(a)) is defined to be the smallest positive integer d such that ad ≡ 1 (mod n).

Let r be a positive integer. Prove that ar ≡ 1(modn) if and only if r is divisible by ordn(a).
(This is Exercise 20 in Chapter 3 of Trappe & Washington, which gives out hints for the
proof).

For the “if” direction, suppose d|r where d = ordn(a). Then ar = akd for some integer k,
which means ar = (ad)k ≡ 1k ≡ 1 (mod n).

For the other direction, suppose ar ≡ 1 (mod n). We know d ≤ r, so there are unique integers
b, c such that bd + c = r, b > 0 and 0 ≤ c < d. Now, abd ≡ 1 (mod n) as in the previous
argument, and also abd+c ≡ r (mod n). We cannot simply divide by abd. But this gives us

abd+c = abd · ac ≡ 1 · ac ≡ 1 (mod n).

Since 1 is the identity under multiplication, we know 1 · ac ≡ ac (mod n), so ac ≡ 1 (mod n).

Now, we know 0 ≤ c < d. If c 6= 0, then c is a positive integer such that ac ≡ 1 (mod n),
which contradicts the definition of d as ordn(a). So c = 0, which means r = bd for some
positive integer b, i.e., r is divisible by b.

(Again, do NOT do any division mod n in this solution unless you have explained why the
number being divided is a unit mod n.)

6. Show that 65 is a strong pseudoprime to base 8 and base 18 but not to base 14 (which is the
product of 8 and 18 modulo 65).

Since 64 is a power of 2, we can write d = 1 and r = 6 for the general case n − 1 = 2d · r.
Obviously 8, 18 and 14 are not 1 mod 65. But let us look at how they exponentiate:

82 ≡ −1 (mod 65), and so 82
n ≡ 1 (mod 65) for all n > 1. That makes 8 a strong pseudoprime

mod 65.

Also, 182 = 324 ≡ −1 (mod 65), so similarly, 18 is a strong pseudoprime mod 65.

However, 142 = 196 ≡ 1 (mod 65), so there is no i ≤ r for which 2i · d ≡ −1 (mod 6)5, and
141 6≡ 1 (mod 65). Thus 14 is not a strong pseudoprime mod 65.

7. Let n be an odd composite integer which is either a prime power or divisible by an integer
which is congruent to 3 modulo 4. Suppose that n is a strong pseudoprime to the bases b1
and b2. Prove that n is a strong pseudoprime to the base b1b2.
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Since n is odd, its factors are odd. If m|n and m ≡ 3 (mod 4), then at least one of the primes
dividing m must be 3 (mod 4). So let us consider when a prime p|n and p ≡ 3 (mod 4).

In this case, writing n − 1 = 2s · d for r ≥ 0 and d odd, if b2
r·d

i ≡ −1 (mod n) then it is −1
(mod p), which is impossible for r > 0 as −1 is not a square mod p. Thus, bd1 ≡ ±1 (mod n)
and bd2 ≡ ±1 (mod n). Therefore (b1b2)d ≡ ±1 (mod n), so n is a strong pseudoprime to the
base b1b2.

Now suppose n = pk for an odd prime p. In this case 1 only has two square roots mod n,
which are ±1.

To see this, first note that any square root of 1 (mod p)k must be equal to ±1 (mod p). Write
a = mp± 1 for some integers m, a such that a2 = 1 (mod p)k.

a2 = (mp±1)2 = m2p2±2mp+ 1 so pk|(m2p2±2mp), so pk−1|m2p±2m. Since p divides the
first term it must divide the second, and p - 2 so p|m; but then a higher power of p divides the
first term, and thus must also divide the second, and in the end we get pk−1|m so pk−1|m.

But then pk|mp, so a = ±1 mod pk.

Thus, defining d similarly to the above part we find that bdi = ±1 (mod n), and again, n is a
strong pseudoprime to the base b1b2.
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