Math 110 HW 3 solutions

May 8, 2013

1. For any positive real number r, prove that " = O(e”) as functions of x.

Suppose r < 1. Then lim,_, 2" = 0. And lim,_, e* = co. Therefore

which means " = O(e”).

Now suppose r > 1. Consider the ratio i—;, where both numerator and denominator approach
I'r—l

oo at co. Using L’Hopital’s rule, this limit is the same as that of - . If r — 1 = 0 then
we mean 1/e*, whose limit is 0. If 0 < r < 1 we have reduced to the previous case.

So, for a positive integer n, suppose n < r < n+ 1, then after n iterations of L’Hopital’s rule,
we conclude that the limit is 0. Thus, 2" = O(e®) for all » > 0.

2. Compute the continued fraction expansion of the three numbers 427/67,+/7 and tan(1). (For
the latter number, you don’t need to prove the result you get is correct, simply do enough com-
putations to be able to guess the pattern (and show how these computations were performed).
Of course 1 is in radians).

First, 67 -6 = 402, so 427/67 = 6 + 25/67. Now 25 - 2 = 50, so 67/25 = 24 17/25, so far we
have 1

427/67T =64+ ——=.

/ o 3

Similarly 25/17 =1+ 8/17, and 17/8 = 2 + 1/8, and finally 8/1 = 8. So altogether we have
a terminating continued fraction, with ag = 6,a1 = 2,a2 = 1,a3 = 2,a4 = 8:

1
427/67 =6 4+ ———.
/ +2+ 1

1+ 2+11/8

For /7, let’s start with the approximate decimal expansion. 2.64575131.

Below is a list of decimals where each one is obtained from the last by removing the integer



part and taking the reciprocal.

2.64575131106 ~ 2.64575131106
1/.64575131106 =~ 1.54858377037
1/.54858377037 ~ 1.82287565548
1/.82287565548 ~ 1.2152504371

1/.2152504371 = 4.64575130937
1/.64575130937 ~ 1.54858377442

and so on. In this way we obtain ayg = 2,a1 = as = a3 = 1,a4 = 4, and based on the
similarities in decimal expansions, conjecture that a,4+4 = a,, for all n > 0.

We can check this conjecture explicitly. The sequence of numbers above may be written,
taking siginficant figures into account, as

V7 & 2.64575131106

1
~ 1.5485837703
VT -2
1
——— ~ 1.822875655
Vi-z
1
T ~ 1.21525044
T 1
V7-2
1
S w—— V7 + 2 (our conjecture).
1 1
ﬁl—z -t

And rewriting this sequence once more, we get

N V-2 3-V7 2V7-5
VT-2'3-VT 2VT-5"8-3V7

So the claim is that the last fraction in that sequence is equal to v/7 + 2, which is to say

(8 = 3VT)(VT+2) = 2V7 -5,

which is true. Thus the continued fraction expansion of v/7 uses the sequence 2,1,1,1,4,1,1,1,4,1, .. ..

For tan(1), let us make a sequence of decimals as above. We get, reducing significant figures



due to calculator limitations:

tan 1 ~ 1.55740772465
1/.55740772465 ~ 1.79401891251
1/.79401891251 ~ 1.2594158454
1/.25941584545 ~ 3.854814644
1/.85481464428 =~ 1.16984425
1/.16984425418 ~ 5.8877470
1/.88774701168 ~ 1.126447
1/.12644704724 ~ 7.90844
1/.90844880784 ~ 1.1007
1/.10077749166 ~ 9.922

So we guess that the continued fraction has coefficients 1,1,1,3,1,5,1,7,1,9,1,11... in other
words ag, = 1,a2,4+1 = 2n + 1. To write it out explicitly we have

1+—1
1
1+1+3++

T 53

. In the continued fraction expansion of /7 calculated in the previous problem, let n be any
integer such that a,4+1 = 2a9. Compute the convergent Z’—f‘ and show that x = p,,y = qn

gives a solution to Pell’s equation 2 — 7y? = 1.

As we know that means a, 1 = 4, which happens when n = 4k — 1 for integer k£ > 0, and we
always mean a,, = 1.

Since the ag = 2 but otherwise aqr, = 4, we have the formula for 7,44 = ]Z"—Ii:
1
Dnta _ pJ R —
n+4 1+ f——
1+ 7‘71,1+2
8, +21
-~ 3r, +8
_ 8pn + 21¢g,
3pn +8¢n

Calculating explicitly that p3/qs = 8/3 and p7/q7 = 127/48 we see this does fit the formula.

To write down a closed form for this we would write

Pn+4 _ 8 21 Pn

dn+4 3 8 dn
and write more explicitly the powers of the 2 x 2 matrix A. But that is not much more
enlightening as it involves for example calculating (8 + 3v/7)".



Suppose (pn, qn) is a solution to Pell’s equation as given, i.e. p2 —7¢2 = 1. Then multiplying
out (8p, + 21¢,)? — 7+ (3pn + 8¢n)?, we have 64(p2 — 7¢2) — 63(p2 — 7¢2) = 64 — 63 = 1.
Therefore (py+4, ¢n+4) is also a solution to the same Pell’s equation. We proceed by induction:
the pair (ps, q3) = (8,3) satisfies 82 — 732 = 1, therefore for all n = 4k — 1, the pair (p,, qn)
is a solution to the Pell’s equation z? — 7y? = 1.

. Let N = 8633243. You compute that 28033242 = 8236849 (mod N). From this information,
what can you conclude about the prime factorisation of N7

We can conclude that N is not prime, because otherwise 2V =1 =1 (mod N) as N is clearly
not divisible by 2.

. Let a and n be positive integers with ged(a;n) = 1. The order of a modulo n (denoted
ord,(a)) is defined to be the smallest positive integer d such that a? =1 (mod n).

Let r be a positive integer. Prove that " = 1(modn) if and only if r is divisible by ord, (a).
(This is Exercise 20 in Chapter 3 of Trappe & Washington, which gives out hints for the
proof).

For the “if” direction, suppose d|r where d = ord,(a). Then a" = a*? for some integer k,
which means a” = (a?)* = 1¥* = 1 (mod n).

For the other direction, suppose ¢” =1 (mod n). We know d < r, so there are unique integers
b,c such that bd +¢c =7, b > 0 and 0 < ¢ < d. Now, a’® = 1 (mod n) as in the previous
argument, and also a®®*¢ =7 (mod n). We cannot simply divide by a*?. But this gives us

abdte — bd-af=1-a¢ = (mod TL)

Since 1 is the identity under multiplication, we know 1-a° = a® (mod n), so a® =1 (mod n).
1

Now, we know 0 < ¢ < d. If ¢ # 0, then c¢ is a positive integer such that a® = 1 (mod n),
which contradicts the definition of d as ord,(a). So ¢ = 0, which means r = bd for some
positive integer b, i.e., r is divisible by b.

(Again, do NOT do any division mod n in this solution unless you have explained why the
number being divided is a unit mod n.)

. Show that 65 is a strong pseudoprime to base 8 and base 18 but not to base 14 (which is the
product of 8 and 18 modulo 65).

Since 64 is a power of 2, we can write d = 1 and r = 6 for the general case n — 1 = 2¢ . r.
Obviously 8, 18 and 14 are not 1 mod 65. But let us look at how they exponentiate:

82 = —1 (mod 65), and s0 82" =1 (mod 65) for all n > 1. That makes 8 a strong pseudoprime
mod 65.

Also, 18% = 324 = —1 (mod 65), so similarly, 18 is a strong pseudoprime mod 65.

However, 142 = 196 = 1 (mod 65), so there is no i < r for which 2¢-d = —1 (mod 6)5, and
14' # 1 (mod 65). Thus 14 is not a strong pseudoprime mod 65.

. Let n be an odd composite integer which is either a prime power or divisible by an integer
which is congruent to 3 modulo 4. Suppose that n is a strong pseudoprime to the bases by
and by. Prove that n is a strong pseudoprime to the base bybs.



Since n is odd, its factors are odd. If m|n and m = 3 (mod 4), then at least one of the primes
dividing m must be 3 (mod 4). So let us consider when a prime p|n and p = 3 (mod 4).

In this case, writing n — 1 = 2% - d for r > 0 and d odd, if b2 = —1 (mod n) then it is —1
(mod p), which is impossible for 7 > 0 as —1 is not a square mod p. Thus, b = £1 (mod n)

and b = £1 (mod n). Therefore (byby)? = £1 (mod n), so n is a strong pseudoprime to the
base b1bs.

Now suppose n = p¥ for an odd prime p. In this case 1 only has two square roots mod n,
which are +1.

To see this, first note that any square root of 1 (mod p)* must be equal to £1 (mod p). Write

a = mp + 1 for some integers m, a such that a®> = 1 (mod p)*.

a? = (mp+1)%2 = m2p? £ 2mp+1 so p¥|(m?p? £2mp), so p*~1|m?p+2m. Since p divides the
first term it must divide the second, and p t 2 so p|m; but then a higher power of p divides the
first term, and thus must also divide the second, and in the end we get p*~1|m so p*~!|m.

But then p*|mp, so a = +£1 mod p*.

Thus, defining d similarly to the above part we find that b¢ = +1 (mod n), and again, n is a
strong pseudoprime to the base bybs.



