
1. Stirling’s Formula via Hayman’s Method

Throughout we write f(n) ∼ g(n) to mean that limn→∞ f(n)/g(n) = 1.
The purpose is to prove Stirling’s Formula

Theorem 1.1 (Stirling’s Formula).
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The function ez/zn+1 is meromorphic with a single pole at 0, where the residue is 1/n!.
Therefore
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where C is some circle centred at the origin, say of radius r.
We parametrise C by z = reiθ. After some simplification, this leads us to
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2πrn

∫ π

−π
exp(reiθ − inθ)dθ.

We will approximate the integral over [−π, π] by an integral over [−ε, ε]. The justification
for this step will be delayed until later. Note that we have the freedom to choose r and ε as
functions of n.

To choose r, we force the coefficient of θ in the power series expansion of the exponent
reiθ − inθ to be zero. This forces r = n. It will turn out that ε = n−2/5 will work as a choice
of ε.

We approximate the exponent of the integrand neiθ− inθ by its degree two Taylor approx-
imation n− nθ2/2.

We need to compare the two integrals

I1 =

∫ ε

−ε
exp(neiθ − inθ)dθ and I2 =

∫ ε

−ε
exp(n− nθ2/2)dθ

There exists a constant C1 such that |(neiθ − inθ) − (n − nθ2/2)| ≤ C1n|θ|3 for all |θ| ≤ π
(Proof: the function θ → |(eiθ− iθ)−(1−θ2/2)/θ3| is continuous on the compact set |θ| ≤ π).
A similar argument shows there exists a constant C2 such that

| exp((neiθ − inθ)− (n− nθ2/2))− 1| ≤ C2n|θ|3

whenever n|θ|3 ≤ 1. Let us now suppose that nε3 → 0 as n → ∞. Then for n sufficiently
large

|I1 − I2| ≤
∫ ε

−ε
| exp((neiθ − inθ)− (n− nθ2/2))− 1|en−nθ2/2dθ

≤
∫ ε

ε
C2nε

3en−nθ
2/2dθ

= C2nε
3I2.

Since nε3 tends to zero as n tends to infinity we obtain

lim
n→∞

I1
I2

= 1.
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Making the change of variable y =
√
n/2θ,

I2 = en
∫ ε
√
n/2

−ε
√
n/2

√
2/ne−y

2
dy

Now we assume that nε2 →∞ as n→∞ and obtain

lim
n→∞

I2e
−n√2/n =

∫ ∞
−∞

e−y
2
dy =

√
π.

Hence we have the asymptotic formula

I1 ∼
√

2πen/
√
n.

It remains to justify the passage from an integral over [−π, π] to an integral over [−ε, ε]. To
do this, we estimate

|
∫ π

ε
exp(neiθ − inθ)dθ| ≤ (π − ε)en cos ε

(The second factor is the greatest absolute value obtained by the integrand) We need an
(again, easily and similarly obtained) estimate of the form 1 − cos ε ≥ C3ε

2 for ε ≤ π and

therefore this integral is bounded above by ene−C3nε2 .
If, say, ε = n−2/5, then it is now easy to see that

lim
n→∞

ene−C3nε2

√
2πen/

√
n

= 0

and similarly we may deal with the integral from −π to −ε.
Therefore ∫ π

−π
exp(neiθ − inθ)dθ ∼ I1

which completes the proof.
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