1. STIRLING’S FORMULA VIA HAYMAN’S METHOD

Throughout we write f(n) ~ g(n) to mean that lim,_,~ f(n)/g(n) = 1.
The purpose is to prove Stirling’s Formula

Theorem 1.1 (Stirling’s Formula).
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The function e?/z"*! is meromorphic with a single pole at 0, where the residue is 1/n!.

Therefore
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where C' is some circle centred at the origin, say of radius r.
We parametrise C' by z = re'?. After some simplification, this leads us to
1 1 i 4
/ exp(re?? — inf)do.

n!  2wrn

—T

We will approximate the integral over [—m, 7| by an integral over [—e, €]. The justification
for this step will be delayed until later. Note that we have the freedom to choose r and € as
functions of n.

To choose r, we force the coefficient of 6 in the power series expansion of the exponent
re'? — inf to be zero. This forces r = n. It will turn out that e = n~2/® will work as a choice
of e.

We approximate the exponent of the integrand ne®® —inf by its degree two Taylor approx-
imation n — n#?/2.

We need to compare the two integrals
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L :/ exp(ne® —inf)dd and I :/ exp(n — nd?/2)db
There exists a constant C; such that |(ne? — inf) — (n — n6?/2)| < Cin|d|® for all |§] < «
(Proof: the function 8 — |(e?® —if) — (1—602/2)/63| is continuous on the compact set |0 < 7).
A similar argument shows there exists a constant Cy such that

|exp((ne — inf) — (n — nb?/2)) — 1| < Con|0?

whenever n|f|?> < 1. Let us now suppose that ne3 — 0 as n — oo. Then for n sufficiently
large
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Since ne? tends to zero as n tends to infinity we obtain
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Making the change of variable y = /n /26,

e\/n/2
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Now we assume that ne2 — oo as n — oo and obtain
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lim Iye "\/2/n = / e_dey = /7.
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Hence we have the asymptotic formula
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It remains to justify the passage from an integral over [—7, 7] to an integral over [—¢, €]. To
do this, we estimate

|/ exp(ne’® — in®)do| < (m — €)e™°s¢

(The second factor is the greatest absolute value obtained by the integrand) We need an
(again, easily and similarly obtained) estimate of the form 1 — cose > Cse? for € < 7 and
therefore this integral is bounded above by ene=Cane,
If, say, € = n~%/°, then it is now easy to see that
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and similarly we may deal with the integral from —m to —e.
Therefore
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which completes the proof.
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