Solutions to 116 Homework 1

- 1. Write z = x + iy.
- (a). If $z_1 = z_2$, all of \mathbb{C} . Otherwise, the perpendicular bisector of the line segment connecting z_1 and z_2 .
 - (b). The unit circle.
 - (c). The vertical line passing through 3.
 - (d). The closed half-plane above the line y = c.
- (e). If $a = a_1 + ia_2$ and $b = b_1 + ib_2$, then the open half-plane defined by

$$a_1x - a_2y + b_1 > 0$$

- (f). The parabola $y^2 = 2x + 1$.
- **2.** Suppose r = 0. If $n \le 0$ there is no solution (I treat 0^0 as undefined), but if n > 0 the solution set is $\{0\}$.

Take r > 0. If n = 0 then there is a solution precisely when w = 1, in which case the solution set is $\mathbb{C} - \{0\}$. Otherwise, there are |n| solutions, given by

$$z = \rho e^{i(\phi + 2\pi k)/n}$$
 $k \in \{0, \dots, |n| - 1\}$

where $\rho = r^{1/n}$ is positive, real n-th root.

3. The domain $\Omega = \{re^{i\theta} : r > 0, \theta \in (-\pi, \pi)\}$ is diffeomorphic to $(0, \infty) \times (-\pi, \pi)$ via the transformation

$$g:(0,\infty)\times(\pi,\pi)\to\Omega:(r,\theta)\mapsto(r\cos\theta,r\sin\theta)$$

In fact we only need that g is a local diffeomorphism. This follows because the Jacbian

$$Dg = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix}$$

is invertible for every $(r, \theta) \in (0, \infty) \times (-\pi, \pi)$. By the inverse function theorem, q^{-1} is locally a diffeomorphism, with Jacobian

$$Dg^{-1} = (Dg)^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\frac{1}{r}\sin \theta & \frac{1}{r}\cos \theta \end{pmatrix}$$

Write $u = \log r$ and $v = \theta$, so that $\log z = u + iv$. Then the above shows u, v are C^1 functions of (x, y). We calculate the derivatives of u, v.

$$Du(x,y) = Du(r,\theta)Dg^{-1}(x,y) = \left(\frac{1}{r}\cos\theta - \frac{1}{r}\sin\theta\right)$$

$$Dv(x,y) = Dv(r,\theta)Dg^{-1}(x,y) = \left(-\frac{1}{r}\sin\theta - \frac{1}{r}\cos\theta\right)$$

Therefore $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. So u, v are C^1 and satisfy the Cauchy-Riemann equations. Therefore $\log z$ as defined is holomorphic on Σ .

4. Suppose $f(z) = \sum_n a_n z^n$ has radius of convergence R > 0. Pick z_0 in this radius. Then

$$f(z) = f(z - z_0 + z_0) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_n \binom{n}{k} (z - z_0)^k z_0^{n-k}$$
 (1)

If k > n we define $\binom{n}{k} = 0$. Note we can pull the a_n inside because the inner-most sum is actually finite.

Take $|z - z_0| < \rho < R - |z_0|$. Then

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left| a_n \binom{n}{k} (z - z_0)^k z_0^{n-k} \right| = \sum_{n=0}^{\infty} |a_n| (|z - z_0| + |z_0|)^n \le \sum_{n=0}^{\infty} |a_n| \rho^n < \infty$$

So the double sum of (1) converges absolutely. In particular, the real and imaginary parts converge absolutely. By Fubini/Tonelli we are justified in changing the order of summation. Therefore

$$f(z) = \sum_{k=0}^{\infty} (z - z_0)^k \sum_{n=0}^{\infty} a_n \binom{n}{k} z_0^{n-k} = \sum_{k=0}^{\infty} b_k (z - z_0)^k$$

where $b_k = \sum_{n=k}^{\infty} a_n \binom{n}{k} z_0^{n-k}$.

So about each z_0 in the radius of convergence f has a power series centered at z_0 with radius of convergence $R - |z_0|$.

5. Let $P(z) = a_n z^n + \ldots + a_0$. Write

$$P(z) = a_n z^n \left(1 + \frac{a_{n-1}}{a_n} z^{-1} + \dots + \frac{a_0}{a_n} z^{-n}\right)$$

Then for |z| sufficiently large, $|P(z)| \ge |a_n||z|^n(1-\frac{1}{2})$. This shows that the infimum of |P| is the infimum of |P| restricted to some ball of radius R. Now $\overline{B_R(0)}$ is compact, and |P| is continuous, so the infimum is reached at some $z_0 \in B_R(0)$.

Suppose, towards a contradiction, that $P(z_0) \neq 0$. Expand P(z) as a Taylor series about z_0 :

$$P(z) = \sum_{k=0}^{n} c_k (z - z_0)^k$$

Let k be the least non-zero integer so that $c_k \neq 0$. P is assumed non-constant, so k exists. Let α be a k-th root of $-\frac{c_0}{c_k}$, and take $M = |c_{k+1}| + \ldots + |c_n|$. Then for $\epsilon \ll 1$

$$|P(z_0 + \epsilon \alpha)| \le |c_0 + c_k \epsilon^k \alpha^k| + |\epsilon \alpha|^{k+1} M$$

= $|c_0|(1 - \epsilon^k) + \epsilon^{k+1} M'$

Choose $\epsilon > 0$ so that $\epsilon M' < \frac{1}{2}$, then we have

$$|P(z_0 + \epsilon \alpha)| \le 1 - \frac{1}{2} \epsilon^k < |P(z_0)|$$

This is a contradiction. So $P(z_0)$ must be 0.