
Solutions to 116 Homework 1

1. Write z = x+ iy.
(a). If z1 = z2, all of C. Otherwise, the perpendicular bisector of the line

segment connecting z1 and z2.
(b). The unit circle.
(c). The vertical line passing through 3.
(d). The closed half-plane above the line y = c.
(e). If a = a1 + ia2 and b = b1 + ib2, then the the open half-plane defined

by
a1x− a2y + b1 > 0

(f). The parabola y2 = 2x+ 1.

2. Suppose r = 0. If n ≤ 0 there is no solution (I treat 00 as undefined),
but if n > 0 the solution set is {0}.

Take r > 0. If n = 0 then there is a solution precisely when w = 1, in
which case the solution set is C − {0}. Otherwise, there are |n| solutions,
given by

z = ρei(φ+2πk)/n k ∈ {0, . . . , |n| − 1}
where ρ = r1/n is positive, real n-th root.

3. The domain Ω = {reiθ : r > 0, θ ∈ (−π, π)} is diffeomorphic to (0,∞)×
(−π, π) via the transformation

g : (0,∞)× (π, π)→ Ω : (r, θ) 7→ (r cos θ, r sin θ)

In fact we only need that g is a local diffeomorphism. This follows because
the Jacbian

Dg =

(
cos θ −r sin θ
sin θ r cos θ

)
is invertible for every (r, θ) ∈ (0,∞) × (−π, π). By the inverse function
theorem, g−1 is locally a diffeomorphism, with Jacobian

Dg−1 = (Dg)−1 =

(
cos θ sin θ
−1
r

sin θ 1
r

cos θ

)
Write u = log r and v = θ, so that log z = u+ iv. Then the above shows

u, v are C1 functions of (x, y). We calculate the derivatives of u, v.

Du(x, y) = Du(r, θ)Dg−1(x, y) =
(

1
r

cos θ 1
r

sin θ
)

Dv(x, y) = Dv(r, θ)Dg−1(x, y) =
(
−1
r

sin θ 1
r

cos θ
)

Therefore ∂u
∂x

= ∂v
∂y

and ∂u
∂y

= − ∂v
∂x

. So u, v are C1 and satisfy the Cauchy-
Riemann equations. Therefore log z as defined is holomorphic on Σ.
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4. Suppose f(z) =
∑

n anz
n has radius of convergence R > 0. Pick z0 in

this radius. Then

f(z) = f(z − z0 + z0) =
∞∑
n=0

∞∑
k=0

an

(
n

k

)
(z − z0)

kzn−k0 (1)

If k > n we define
(
n
k

)
= 0. Note we can pull the an inside because the

inner-most sum is actually finite.
Take |z − z0| < ρ < R− |z0|. Then

∞∑
n=0

∞∑
k=0

∣∣∣∣an(nk
)

(z − z0)
kzn−k0

∣∣∣∣ =
∞∑
n=0

|an|(|z − z0|+ |z0|)n ≤
∞∑
n=0

|an|ρn <∞

So the double sum of (1) converges absolutely. In particular, the real and
imaginary parts converge absolutely. By Fubini/Tonelli we are justified in
changing the order of summation. Therefore

f(z) =
∞∑
k=0

(z − z0)
k

∞∑
n=0

an

(
n

k

)
zn−k0 =

∞∑
k=0

bk(z − z0)
k

where bk =
∑∞

n=k an
(
n
k

)
zn−k0 .

So about each z0 in the radius of convergence f has a power series centered
at z0 with radius of convergence R− |z0|.

5. Let P (z) = anz
n + . . .+ a0. Write

P (z) = anz
n(1 +

an−1

an
z−1 + . . .+

a0

an
z−n)

Then for |z| sufficiently large, |P (z)| ≥ |an||z|n(1− 1
2
). This shows that the

infimum of |P | is the infimum of |P | restricted to some ball of radius R. Now
BR(0) is compact, and |P | is continuous, so the the infimum is reached at
some z0 ∈ BR(0).

Suppose, towards a contradiction, that P (z0) 6= 0. Expand P (z) as a
Taylor series about z0:

P (z) =
n∑
k=0

ck(z − z0)
k

Let k be the least non-zero integer so that ck 6= 0. P is assumed non-
constant, so k exists. Let α be a k-th root of − c0

ck
, and take M = |ck+1| +

. . .+ |cn|. Then for ε� 1

|P (z0 + εα)| ≤ |c0 + ckε
kαk|+ |εα|k+1M

= |c0|(1− εk) + εk+1M ′
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Choose ε > 0 so that εM ′ < 1
2
, then we have

|P (z0 + εα)| ≤ 1− 1
2
εk < |P (z0)|

This is a contradiction. So P (z0) must be 0.
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