Solutions to 116 Homework 2

1. Write z(t) = z(t) +iy(t), and F(x +iy) = U(z,y) + iV (z,y). Since F is
holomorphic in 2 > z(c¢), its component functions U, V are differentiable (in
fact analytic) in a neighborhood of z(c). By assumption, z is differentiable
at c.

So Foz: [a,bl — C is differentiable at ¢, with derivative given by the
chain rule as

(Foz) =Uxa +Uy +i(Ver' + V)

where we write U, for 42 (z(c)), etc.

Using the Cauchy-Riemann equations, we can rewrite the above as

(Foz)(c)=Ux' — Vo +i(Voa' + Uyy)
= F'(2(c))~'(c)

2. Recall the ratio test: if f =" ja,z", and the limit
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exists (possibly infinite), then the radius of convergence of f is 1/L. Here we
define the ratios 1/oo = 0 and 1/0 = oo.

In each problem we consider |**%| as n tends to co. Write R for the
radius of convergence. !

(a). Using that log is bounded near 1,
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3. Trivially f(z) = 2% is entire. So given any w and any circle C' containing
w, the Cauchy integral formula says
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where C is oriented counter-clockwise. In this problem w = 1 and C' = {|z| =
3}. So
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4. Since f is entire, it has a power series expansion f(z) =Y.
converges on all of C. And

Let Cr be the circle of radius. By the Cauchy integral formula,
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Let P(x) = ¢y + ...+ cgz? be a real polynomial of degree d. Set M =
lcol + ...+ |ca|l. Then for R > 1,
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So if n > d, taking R arbitrarily large shows that a, = 0. Therefore
f(z) =ag+ ...+ ayz%is a polynomial of at most degree d.



