Solutions to 116 Homework 3

1. Define analytic continuations

eiz + e—iz eiz _ e—iz
—, sin(z) = ——

2 ’ (2) 21
these are both entire by inspection, and agree with the usual cos, sin on the
real axis. We write cot(z) = :1%((2

Then cot is a quotient of entire functions. I claim that the zeros of analytic
cos are disjoint from the zeros of analytic sin. Given this, cot has a zero at

zp iff cos(zg) = 0. And cot has a pole at zy iff 1/cot has a zero at zy iff

cos(z) =

sin(zp) = 0.

We calculate the zeros. Let zg = a+ib. Then cos(z) = 0 iff €420 = —1
iff b = 0 and €?® = —1. So zeros of analytic cosine are given by {m/2 + 7n :
n € Z}.

Similarly, the zeros of analytic sine are {mn : n € Z}.

The zero sets are disjoint, as claimed. Therefore the zeros of cot are
{m/2+4 mn :n € Z}, and the poles of cot are {mn : n € Z}.

We prove that every zero and pole is simple. It suffices to show that every
zero of analytic cos, sin is simple. For this, we show that if cos(zy) = 0, then

4 cos(zp) # 0, and the same for sin.

d
We have
7 cos(z) = ze _226 = —sin(z)
d ;12 1%
- sin(z) = % = cos(2)

and the result follows by disjointness of the zero sets.

2. f has at most a simple pole at zy, so we can write

a

f(z) = +9(2)

Z— 20

for g(z) a holomorphic function, and a = Res,, f.
Choose M so that |g| < M on the unit ball Bj(zp). Recall that the

arclength L(C,) = €. Then
/ g(z)dz
0| /e,

lim/ g(2)dz| = lim
e—0 C. €—

Let C, be parameterized by the curve

glin%]\/[*ee:O (1)

2(t) = 20+ e, ¢ €la,a+0)

1



for some a € [0,27). Then

a a+6 a ‘
/ dz = / —mzeem’dqﬁ =iba
c. 2 — 2 o €€

Combining (1) and (2), we have that

lim / fdz = lim dz = i6Res,, f

e—0 e—0 ,Z — 20

recalling that a = Res,, f.

3. Let I' be the contour oriented counter-clockwise

I

-R r1 R

Define the meromorphic function f(z) = We note that

1—&-24
R
]%EEO/FQfdz<lEEORZ_1 0

1 < 1
lim/fdz- lim dx—Q/
R—o00 R—oo J_p 1+ o o 1+ xt
where we also use the fact that - is even.

Let
2 = 6i7r(1/4+k/2) k= 1 2 3 4

be the roots of 1 + z*. Then f has a simple pole at each z,. In particular,

the contour I contalns the poles z1, 2.
We calculate

. 1
Resaf = I = 201

— 6731'71’/4



and similarly Res,, f = e~ /4.
So for R is sufficiently large, the residue theorem says that

/fdz — 2mi(Res,, f + Res., f) = 7/V2 (4)
r

Combining (3) and (4) we have

/°° 1 d T
gj:
o 1+at 2v/2

4. If R € R,, then since # is bounded we can write

R - R -
/ sm(x)dx _ lim/ sin(x) e
0 xXr e—0 € X

Let I' be the contour (oriented counter-clockwise)

I .
“R
e r, r,
r, /- \ Iy
R -E £ R

Define the function f(z) = ¢**/z, so f is meromorphic with a simple pole
at 0. Observe that

—€ . - R ..
ds — cos(z) + isin(z) J cos(z) + i sm(x)d
/F1UF3 f ‘ / & + Z X

R T T

py /R sin(x)
ez

So by our initial remark

sin(z)

dx

R—00 e—00

lim lim fdz=2i /
I UT's 0 Z

We determine these limits for other components of I'. Note that I'y, I's,
['¢ are independent of ¢, while I's is independent of R.
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(calculate T'y) f has a simple pole at 0, and I'y is a (clockwise-oriented!)
half-circle of radius € and centered at 0, so by Q2

lim/ fdz = —imResy f = —im
1)

e—0

(calculate T'y)

VR ciR—t
lim / fdz| < lim ,
R—o0 Iy R—o0 [, R+t
< I%im — % \/ﬁ
(calculate T's)
R | ,it—VR
lim / dz| < lim — | dt
R—o0 F5f R—o0 R t‘{'Z\/ﬁ
-VR
< lim * 2R
~ R—oo \/ﬁ
=0

(calculate T'g) same as I'y
Now trivially f is holomorphic in C — {0}, so [, f = 0 for every non-zero
R, e. Combining the above calculations shows that

0= lim lim / fdz = —im + 2i / Sin(@)
T 0

R—o00 €¢—0 €T

/ sin(x) P
0 x 2

and hence




