
Solutions to 116 Homework 3

1. Define analytic continuations

cos(z) =
eiz + e−iz

2
, sin(z) =

eiz − e−iz

2i

these are both entire by inspection, and agree with the usual cos, sin on the
real axis. We write cot(z) = cos(z)

sin(z)
.

Then cot is a quotient of entire functions. I claim that the zeros of analytic
cos are disjoint from the zeros of analytic sin. Given this, cot has a zero at
z0 iff cos(z0) = 0. And cot has a pole at z0 iff 1/ cot has a zero at z0 iff
sin(z0) = 0.

We calculate the zeros. Let z0 = a+ ib. Then cos(z0) = 0 iff e2ia−2b = −1
iff b = 0 and e2ia = −1. So zeros of analytic cosine are given by {π/2 + πn :
n ∈ Z}.

Similarly, the zeros of analytic sine are {πn : n ∈ Z}.
The zero sets are disjoint, as claimed. Therefore the zeros of cot are

{π/2 + πn : n ∈ Z}, and the poles of cot are {πn : n ∈ Z}.
We prove that every zero and pole is simple. It suffices to show that every

zero of analytic cos, sin is simple. For this, we show that if cos(z0) = 0, then
d
dz

cos(z0) 6= 0, and the same for sin.
We have

d

dz
cos(z) =

ieiz − ie−iz

2
= − sin(z)

d

dz
sin(z) =

ieiz + ie−iz

2i
= cos(z)

and the result follows by disjointness of the zero sets.

2. f has at most a simple pole at z0, so we can write

f(z) =
a

z − z0

+ g(z)

for g(z) a holomorphic function, and a = Resz0f .
Choose M so that |g| < M on the unit ball B1(z0). Recall that the

arclength L(Cε) = εθ. Then∣∣∣∣limε→0

∫
Cε

g(z)dz

∣∣∣∣ = lim
ε→0

∣∣∣∣∫
Cε

g(z)dz

∣∣∣∣ ≤ lim
ε→0

M ∗ θε = 0 (1)

Let Cε be parameterized by the curve

z(t) = z0 + εeiφ, φ ∈ [α, α + θ]
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for some α ∈ [0, 2π). Then∫
Cε

a

z − z0

dz =

∫ α+θ

α

a

εeiφ
iεeiφdφ = iθa (2)

Combining (1) and (2), we have that

lim
ε→0

∫
Cε

fdz = lim
ε→0

∫
Cε

a

z − z0

dz = iθResz0f

recalling that a = Resz0f .

3. Let Γ be the contour oriented counter-clockwise

Define the meromorphic function f(z) = 1
1+z4

. We note that

lim
R→∞

∣∣∣∣∫
Γ2

fdz

∣∣∣∣ ≤ lim
R→∞

πR

R4 − 1
= 0

So

lim
R→∞

∫
Γ

fdz = lim
R→∞

∫ R

−R

1

1 + x4
dx = 2

∫ ∞
0

1

1 + x4
(3)

where we also use the fact that 1
1+x4 is even.

Let
zk = eiπ(1/4+k/2), k = 1, 2, 3, 4

be the roots of 1 + z4. Then f has a simple pole at each zk. In particular,
the contour Γ contains the poles z1, z2.

We calculate

Resz1f = lim
z→z1

(z − z1)
1

1 + z4
= e−3iπ/4
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and similarly Resz2f = e−iπ/4.
So for R is sufficiently large, the residue theorem says that∫

Γ

fdz = 2πi(Resz1f + Resz2f) = π/
√

2 (4)

Combining (3) and (4) we have∫ ∞
0

1

1 + x4
dx =

π

2
√

2

4. If R ∈ R+, then since sin(x)
x

is bounded we can write∫ R

0

sin(x)

x
dx = lim

ε→0

∫ R

ε

sin(x)

x
dx

Let Γ be the contour (oriented counter-clockwise)

Define the function f(z) = eiz/z, so f is meromorphic with a simple pole
at 0. Observe that∫

Γ1∪Γ3

fdz =

∫ −ε
−R

cos(x) + i sin(x)

x
dz +

∫ R

ε

cos(x) + i sin(x)

x
dx

= 2i

∫ R

ε

sin(x)

x

So by our initial remark

lim
R→∞

lim
ε→∞

∫
Γ1∪Γ3

fdz = 2i

∫ ∞
0

sin(x)

x
dx

We determine these limits for other components of Γ. Note that Γ4, Γ5,
Γ6 are independent of ε, while Γ2 is independent of R.
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(calculate Γ2) f has a simple pole at 0, and Γ2 is a (clockwise-oriented!)
half-circle of radius ε and centered at 0, so by Q2

lim
ε→0

∫
Γ2

fdz = −iπRes0f = −iπ

(calculate Γ4)

lim
R→∞

∣∣∣∣∫
Γ4

fdz

∣∣∣∣ ≤ lim
R→∞

∫ √R
0

∣∣∣∣ eiR−tR + it

∣∣∣∣ dt
≤ lim

R→∞

1

R
∗
√
R

= 0

(calculate Γ5)

lim
R→∞

∣∣∣∣∫
Γ5

fdz

∣∣∣∣ ≤ lim
R→∞

∫ R

−R

∣∣∣∣∣ eit−
√
R

t+ i
√
R

∣∣∣∣∣ dt
≤ lim

R→∞

e−
√
R

√
R
∗ 2R

= 0

(calculate Γ6) same as Γ4

Now trivially f is holomorphic in C−{0}, so
∫

Γ
f = 0 for every non-zero

R, ε. Combining the above calculations shows that

0 = lim
R→∞

lim
ε→0

∫
Γ

fdz = −iπ + 2i

∫ ∞
0

sin(x)

x
dx

and hence ∫ ∞
0

sin(x)

x
dx =

π

2
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