Solutions to 116 Homework 4

1. If f is holomorphic and non-zero in some region U, then both f’ and 1/f
are holomorphic in U. So F can only have poles where f has a zero or pole.

Let zy be a zero or pole of f. Then since f is meromorphic, near z, we
can write

f=(2z—2)"(2)
for k a non-zero integer, and g some holomorphic function such that g(zy) #
0. Then

fr=h(z=2)""g+(—2)y

So near 2
k q
Z2—2z0 ¢
and since g is holomorphic, non-zero near z, the quotient ¢’/g is holomorphic.
Therefore F' has a simple pole at zy with residue k.
In particular, if zq is a zero of order k, then F' has residue k. And if z; is

a pole of order k, then F' has residue —k.
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2. Let f(2) = 25, so b, = f™(0). Trivially f has simple poles at log 2 +

2—e?’

2min (n € 7)), each with residue —1/2. So the function

2) = 5o + 1)

z —log 2)
is holomorphic on the ball Bs(0) of radius 5 centered at 0 (in fact, up to
radius 1/(log2)? 4+ 472). We can write g as a power series g = >~ @, 2"
with radius of convergence at least 5.

Now |
™) (0) — n! |
£7(0) 2(log 2)n+1 o
But since log2 < 5 is in the radius of convergence of g, we have that

|
lim % = log2 lim a,(log2)" =0

e 2(log 2)n+1

and hence f™(0) ~ W.



3. Our generating function is entire, so by the Cauchy integral formula we

have

n] ez+z2/2
t, = —
"ooomi Jo antt

dz

where C' is any circle centered at 0. Let C' have radius r, and we can write

n! " 6 2 /0,20 _ ;
t, = ! 2e“Y — inf)do
27r7°”/ exp(re” +r°/2e ind)

We wish to use Hayman’s method. In particular, we seek an €(n) and
r(n) so that (as functions of n)

/ exp(re + r?/2e*% — inh)dl ~ / exp(re +r?/2e%0 —inf)d§ (1)

~ /6 exp(r + 7“2/2 — 92F(n))d9 (2)

—€

For F(n) some function of n. In essence we want r so that in the Taylor
expansion of e +12/2e%% —inf, the coefficient of  is 0. Therefore we must
have 7 + 72 —n = 0, and hence

r(n)=+/1/4+n—1/2 (3)
This means that F(n) = r/2 + r?>. Using the change of variables y =

O\/r/2 +r?
€ ey/O(n) )
\/r/2+r2/_ exp(—GQF(n))dG—/ e Y dy

—e4/O0(n)

N/ e’dey
=7

Hence, denoting the integral (2) by I,
€r+r2/2 en/2+vn/2—1/4

\/r/2+7"2\/%N Vn

having additionally replaced r by the expression (3).

An argument following the handout on Hayman’s method shows we can
take e(n) = n~2/%, so that (1), (2) hold. In fact we can take ¢ = n®, for any
« € (—1/3,—1/2). Then the above shows that

~Y

™

b n! o/ 2HV/2-1/4 n" e~ n/2+Vn/2-1/4
"2y /mnrn Varn



In the second relation we used Stirling’s formula:

nl ~ V2mn <2)
e

We find an asymptotic expression for r”. Recall the Taylor expansions
Vi+r =1+1/2z+ O(z?) and log(1 — x) = —x — 1/22% + O(2?), for z
sufficiently small. We have, for n sufficiently large,

log(r") = nlog(y/1/4+n —1/2)

=n/2log(n) + nlog (\/% +1-— ﬁ)

=n/2log(n) + nlog (1 + % +0(n™?) — ﬁ)

— n/2log(n) —n (—8% + ﬁ) — /2 (—8% + ﬁ)Q +On512)

— n/2log(n) — v/n/2 + O(n~?)

Hence
P~ nn/26—\/ﬁ/2

and the result follows.

4. We first prove convergence. Write [[7,(1+z,) = C [ _,,(1+2,) where
|zn| < 1/2 for every n > M. Clearly it suffices to prove convergence under
the assumption that |z,| < 1/2 for every n.

We can define the complex logarithm on the ball By/(1), and by our
assumption 1+ z, € By /2(1) for each n. It therefore suffices to show that the
sum »_ >~ log(1 + z,) exists, since by continuity

N N
exp (A}me Z log(1 + Zn)> = A}lir(l)o exp (Z log(1 + zn))
n=1

n=1
N
= L =)
n=1
Further, recall the power series expansion log(1+2z) = z2—1/22?+1/323+
..., converging for all |z| < 1. Therefore

[log(1 + 2,)[ < [2n] + |2n] Z |2a]™ < 2[24]

n=1



So Y > log(1 + z,) is absolutely convergent, and hence convergent. So
by the above discussion the infinite product [[°_, (1 + 2,) converges.

Now if every z, # —1, then C' # 0 and we can write [[°2,,(1+ 2,) = €*,
for ¥ € C. So the product converges to a non-zero limit. Conversely, if
z, = —1 for some n, then necessarily n < M, and so C' = 0.



