
Solutions to 116 Homework 4

1. If f is holomorphic and non-zero in some region U , then both f ′ and 1/f
are holomorphic in U . So F can only have poles where f has a zero or pole.

Let z0 be a zero or pole of f . Then since f is meromorphic, near z0 we
can write

f = (z − z0)kg(z)

for k a non-zero integer, and g some holomorphic function such that g(z0) 6=
0. Then

f ′ = k(z − z0)k−1g + (z − z0)kg′

So near z0

F =
k

z − z0

+
g′

g

and since g is holomorphic, non-zero near z0, the quotient g′/g is holomorphic.
Therefore F has a simple pole at z0 with residue k.

In particular, if z0 is a zero of order k, then F has residue k. And if z0 is
a pole of order k, then F has residue −k.

2. Let f(z) = 1
2−ez , so bn = f (n)(0). Trivially f has simple poles at log 2 +

2πin (n ∈ Z), each with residue −1/2. So the function

g(z) =
1

2(z − log 2)
+ f(z)

is holomorphic on the ball B5(0) of radius 5 centered at 0 (in fact, up to
radius

√
(log 2)2 + 4π2). We can write g as a power series g =

∑∞
n=0 anz

n

with radius of convergence at least 5.
Now

f (n)(0) =
n!

2(log 2)n+1
+ n!an

But since log 2 < 5 is in the radius of convergence of g, we have that

lim
n→∞

n!an
n!

2(log 2)n+1

= log 2 lim
n→∞

an(log 2)n = 0

and hence f (n)(0) ∼ n!
2(log 2)n+1 .
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3. Our generating function is entire, so by the Cauchy integral formula we
have

tn =
n!

2πi

∫
C

ez+z
2/2

zn+1
dz

where C is any circle centered at 0. Let C have radius r, and we can write

tn =
n!

2πrn

∫ π

−π
exp(reiθ + r2/2e2iθ − inθ)dθ

We wish to use Hayman’s method. In particular, we seek an ε(n) and
r(n) so that (as functions of n)∫ π

−π
exp(reiθ + r2/2e2iθ − inθ)dθ ∼

∫ ε

−ε
exp(reiθ + r2/2e2iθ − inθ)dθ (1)

∼
∫ ε

−ε
exp(r + r2/2− θ2F (n))dθ (2)

For F (n) some function of n. In essence we want r so that in the Taylor
expansion of reiθ + r2/2e2iθ− inθ, the coefficient of θ is 0. Therefore we must
have r + r2 − n = 0, and hence

r(n) =
√

1/4 + n− 1/2 (3)

This means that F (n) = r/2 + r2. Using the change of variables y =
θ
√
r/2 + r2

√
r/2 + r2

∫ ε

−ε
exp(−θ2F (n))dθ =

∫ ε
√
O(n)

−ε
√
O(n)

e−y
2

dy

∼
∫ ∞
−∞

e−y
2

dy

=
√
π

Hence, denoting the integral (2) by I,

I ∼ er+r
2/2√

r/2 + r2

√
π ∼ en/2+

√
n/2−1/4

√
n

√
π

having additionally replaced r by the expression (3).
An argument following the handout on Hayman’s method shows we can

take ε(n) = n−2/5, so that (1), (2) hold. In fact we can take ε = nα, for any
α ∈ (−1/3,−1/2). Then the above shows that

tn ∼
n!

2
√
πnrn

en/2+
√
n/2−1/4 ∼ nn√

2rn
e−n/2+

√
n/2−1/4
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In the second relation we used Stirling’s formula:

n! ∼
√

2πn
(n
e

)n
We find an asymptotic expression for rn. Recall the Taylor expansions√

1 + x = 1 + 1/2x + O(x2) and log(1 − x) = −x − 1/2x2 + O(x3), for x
sufficiently small. We have, for n sufficiently large,

log(rn) = n log(
√

1/4 + n− 1/2)

= n/2 log(n) + n log

(√
1

4n
+ 1− 1

2
√
n

)

= n/2 log(n) + n log

(
1 +

1

8n
+O(n−2)− 1

2
√
n

)
= n/2 log(n)− n

(
− 1

8n
+

1

2
√
n

)
− n/2

(
− 1

8n
+

1

2
√
n

)2

+O(n−3/2)

= n/2 log(n)−
√
n/2 +O(n−1/2)

Hence
rn ∼ nn/2e−

√
n/2

and the result follows.

4. We first prove convergence. Write
∏∞

n=1(1+zn) = C
∏∞

n=M(1+zn) where
|zn| < 1/2 for every n ≥ M . Clearly it suffices to prove convergence under
the assumption that |zn| < 1/2 for every n.

We can define the complex logarithm on the ball B1/2(1), and by our
assumption 1 + zn ∈ B1/2(1) for each n. It therefore suffices to show that the
sum

∑∞
n=1 log(1 + zn) exists, since by continuity

exp

(
lim
N→∞

N∑
n=1

log(1 + zn)

)
= lim

N→∞
exp

(
N∑
n=1

log(1 + zn)

)

= lim
N→∞

N∏
n=1

(1 + zn)

Further, recall the power series expansion log(1+z) = z−1/2z2 +1/3z3 +
. . ., converging for all |z| < 1. Therefore

| log(1 + zn)| ≤ |zn|+ |zn|
∞∑
n=1

|zn|n ≤ 2|zn|
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So
∑∞

n=1 log(1 + zn) is absolutely convergent, and hence convergent. So
by the above discussion the infinite product

∏∞
n=1(1 + zn) converges.

Now if every zn 6= −1, then C 6= 0 and we can write
∏∞

n=M(1 + zn) = eΣ,
for Σ ∈ C. So the product converges to a non-zero limit. Conversely, if
zn = −1 for some n, then necessarily n < M , and so C = 0.
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