
Solutions to 116 Homework 5

1. Recall by Hadamard’s theorem we have the identity

1

Γ(s)
= eγss

∞∏
n=1

(1 + s/n)e−s/n

where γ is Euler’s constant.
Choose a small closed ball B on which Γ is holomorphic. Then on B we

have

log Γ(s) = −γs− log s+
∞∑
n=1

− log(1 + s/n) +
s

n

This sum converges uniformly on B. Therefore we take derivatives and
find (for s ∈ B)

Γ′(s)

Γ(s)
= −γ − s−1 +

∞∑
n=1

−1

n+ s
+
s

n
(1)

but both sides of (1) are meromorphic functions on a connected set, and
agree on B, so identity (1) must hold everywhere.

Recall that Γ(1) = 1. Therefore

Γ′(1) = −γ − 1 +
∞∑
n=1

−1

1 + n
+

1

n

= −γ − 1 + lim
N→∞

(
1− 1

1 +N

)
= −γ

2. A. Using identities of Γ, for z 6∈ Z,

π

sinπz
= Γ(z)Γ(1− z) = (−z)Γ(z)Γ(−z) (2)

We calculate

Γ(z)Γ(−z) = e−γz
1

z

(
∞∏
n=1

ez/n

1 + z/n

)
eγz
−1

z

(
∞∏
n=1

e−z/n

1− z/n

)

=
−1

z2

∞∏
n=1

(
ez/n

1 + z/n

)(
e−z/n

1− z/n

)
=
−1

z2

∞∏
n=1

1

1− z2/n2
(3)
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where we are justified in rearranging the products since the sums(
∞∑
n=1

− log(1 + z/n) + z/n

)
+

(
∞∑
n=1

− log(1− z/n)− z/n

)

are absolutely convergent. Combine (2) with (3) and the result follows.
B. We show sin z has growth order 1. On the one hand, writing z = x+iy,

we have

| sin z| =
∣∣∣∣eiz − e−iz2i

∣∣∣∣ ≤ 1

2
(e−y + ey) ≤ Cey ≤ Ce|z|

and so sin z has growth order ≤ 1. Conversely,

| sin iy| =
∣∣∣∣e−y − ey2i

∣∣∣∣ ≥ C ′ey = C ′e|iy|

The zeros of sinπz are the integers, and all have order 1. By Hadamard’s
theorem we can write

sin πz = eaz+bz
∏
n∈Z
n 6=0

(1− z/n)ez/n

= eaz+bz
∞∏
n=1

(1− z/n)ez/n(1 + z/n)e−z/n

= eaz+bz
∞∏
n=1

(1− z2/n2) (4)

for some constants a, b.
We determine a, b. Since sin is odd, and the infinite product in (4) is

even, we must have
−eaz+bz = e−az+b(−z)

and hence a = 0.
To find b, recall that limz→0

sin z
z

= 1. So using (4)

1 = lim
z→0

sin πz

πz
=

1

π
eb

and so eb = π.
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3. Let <(s) = σ > 1. Note that if ab > N2, then necessarily a > N or
b > N . For any N , M we have∣∣∣∣∣∣

N2∑
n=1

d(n)

ns
−

(
M∑
n=1

1

ns

)2
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑

ab>N2

a,b≤M

1

asbs

∣∣∣∣∣∣∣
≤
∑

ab>N2

a,b≤M

1

aσbσ

≤ 2
M∑
b=1

1

bσ

M∑
a=N

1

aσ

≤ 2ζ(σ)
M∑
a=N

1

aσ

The right hand side is bounded by 2ζ(σ)2. Taking M →∞, we have∣∣∣∣∣
N2∑
n=1

d(n)

ns
− ζ(s)

∣∣∣∣∣ ≤ 2ζ(σ)
∞∑
n=N

1

nσ

But the right hand side tends to zero as N → ∞, since the sum is
convergent for every σ > 1. The result follows.

4. We first show that
∏

p(1 − p−s)−1 defines a holomorphic function on
Ω = {<(s) > 1}. Let K be a compact subset of Ω. Then <(s) > σ > 1 on
K.

If s ∈ K, then |p−s| < p−σ < 1/2 for p > N . So on K we have∑
p

|(1− p−s)−1 − 1| ≤
∑
p

p−σ|1− p−s|−1

≤ C +
∑
p>N

2p−σ

≤ C + 2ζ(σ)

So by Homework 4 the product
∏

p(1 − p−s)−1 converges uniformly on
compact sets, and hence defines a holomorphic function on Ω. And since
(1− p−s)−1 6= 0 for every s ∈ Ω, the convergent is non-vanishing.

By analytic continuation it now suffices to prove the identity when s > 1.
Recall that

1

1− p−s
= 1 + p−s + p−2s + . . . (5)
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By the fundamental theorem of arithmetic, for every N and M we have

∏
p≤N

(1 + p−s + p−2s + . . .+ p−Ms) ≤
N !M∑
n=1

1

ns
≤ ζ(s)

where the product ranges over primes ≤ N .
By identity (5), we can take M →∞, and obtain∏

p≤N

(1− p−s)−1 ≤ ζ(s)

for every N . Taking N →∞,∏
p

(1− p−s)−1 ≤ ζ(s)

Conversely,

N∑
n=1

1

ns
≤
∏
p≤N

(1 + p−s + . . .+ p−Ns)

≤
∏
p≤N

(1− p−s)−1

≤
∏
p

(1− p−1)−1

and the result follows by taking N →∞.
We show that ζ(−3 + 47i) 6= 0. Recall the identity ξ(s) = ξ(1− s), which

can be written

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s) (6)

The Γ function is never zero, nor is any exponent of π. By the above
discussion ζ(1− (−3 + 47i)) 6= 0, and so (6) shows that ζ(−3 + 47i) 6= 0.
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