Solutions to 116 Homework 5

1. Recall by Hadamard’s theorem we have the identity
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where 7 is Euler’s constant.
Choose a small closed ball B on which I' is holomorphic. Then on B we

have -
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This sum converges uniformly on B. Therefore we take derivatives and
find (for s € B)
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but both sides of (1) are meromorphic functions on a connected set, and
agree on B, so identity (1) must hold everywhere.
Recall that I'(1) = 1. Therefore
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2. A. Using identities of I', for z € Z,
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We calculate




where we are justified in rearranging the products since the sums
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are absolutely convergent. Combine (2) with (3) and the result follows.

B. We show sin z has growth order 1. On the one hand, writing z = x+1y,
we have . ,
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and so sin z has growth order < 1. Conversely,
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The zeros of sin 7z are the integers, and all have order 1. By Hadamard’s
theorem we can write
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for some constants a, b.

We determine a, b. Since sin is odd, and the infinite product in (4) is

even, we must have
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and hence a = 0.

= 1. So using (4)
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and so e’ = 7.



3. Let R(s) = 0 > 1. Note that if ab > N2, then necessarily a > N or
b> N. For any N, M we have
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The right hand side is bounded by 2¢(c)?. Taking M — oo, we have
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But the right hand side tends to zero as N — o0, since the sum is
convergent for every o > 1. The result follows.

4. We first show that Hp(l — p~*)~! defines a holomorphic function on
Q= {R(s) > 1}. Let K be a compact subset of 2. Then R(s) > o > 1 on
K.

If s € K, then |[p~*| < p~@ < 1/2 for p > N. So on K we have
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So by Homework 4 the product [] (1 —p~*)~" converges uniformly on
compact sets, and hence defines a holomorphic function on 2. And since
(1 —p~%)~1 #£0 for every s € §, the convergent is non-vanishing.

By analytic continuation it now suffices to prove the identity when s > 1.
Recall that
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By the fundamental theorem of arithmetic, for every N and M we have
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where the product ranges over primes < N.
By identity (5), we can take M — oo, and obtain
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for every N. Taking N — oo,

Conversely,

and the result follows by taking N — oc.
We show that ((—3447i) # 0. Recall the identity {(s) = £(1 — s), which

can be written
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The T' function is never zero, nor is any exponent of 7. By the above
discussion ((1 — (=3 4 47i)) # 0, and so (6) shows that ((—3 + 47:) # 0.



