Solutions to 116 Homework 6

1. Integrating in the Riemann-Stieltjes sense, we have
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Or we can evaluate the identity explicitly. Note that
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and let p; < ps < ... < p, be the primes < z, so that w(x) = n. Then
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2. Since z € b is never real, cz +d # 0 on b, so ps : h — C is well-defined.
Take z € b, then we calculate
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so pa(h) Ch.
Let B be the matrix (4 ), and write pp for the corresponding Mobius

transform. Since det B = det A, as above pg is a well-defined map h — b.
An easy calculation shows that p,* = pp.



3. Let |f]| >e>0onC =09dD. By assumption, f, — f uniformly on the
closed disc D, so we can find an N such that |f, — f| < €¢/2 on C whenever
n > N. In particular, this means that | f| > |f,—f|- So by Rouche’s theorem,
fand f+ (f, — f) = f. have the same number of zeros when n > N.

4. Take Rs > 1. For any integer IV,
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(again we use Riemann-Stieltjes integral)
Since |[N17%| = N'7% take N — oo and the result follows.

The last integral converges absolutely iff Rs > 0, since |z — |z]| < 1
but |z — |x]| > 1/2 for z € N+ [1/2,1]. So the right hand side defines a

meromorphic extension of ¢ to Rs > 0.



