Solutions to 116 Homework 7

1. By definition, i* = €''°¢?. Depending on which branch we pick, logi =
i(m/2 + 27k) for k € Z. So the possible values for i’ are

{6—71'/2"1‘27Tk ke Z}

2. First suppose a > 1, and let I" be the contour oriented counter-clockwise
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Since ¢ > 0, we have for all N sufficiently large
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We wish to prove that the contour integrals over I'y, I's and I'y vanish as
N tends to infinity. This will imply that
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which proves the result for a > 1.
We calculate
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Now take a < 1. We let I' be the clockwise contour

c+iN SIN+iIN
I
r1 FS
P
cil YN-iN

. . S
By construction I' contains no poles of “-, so we have
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for every N.
As before it suffices to prove that, as N — oo, the integral tends to zero
on the contours I'y, I's and I'y. We calculate
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3. Recall that ( # 0 on Rz > 1. Let

a = min [((1+t)| >0
te(a,b]

Since ¢ is holomorphic on C — {1}, ¢ is uniformly continuous on the
compact set K = [0, 1] +i[a, b]. Choose § so that if z,w € K and |z —w]| < J,
then |¢(2) — ((w)| < @/2. Then if 1 —§ < o < 1, we have

IC(o+it)] > |C(1+idt)] — |C(1 4+ it) — ((o +it)| > /2
Hence ¢ # 0 on (1 —6,00) +i(a,b).
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4. We wish to show that
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This will follow by Fubini if we can show that both sides are absolutely
convergent. In other words, we need

/Cfmi < oo and Z/

Using that c is positive, we have
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Therefore it suffices prove that the integral over the right hand side is abso-
lutely convergent.
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And the claim follows.
Recall
1 et s 0 if v <1
L / s = LS (2)
270 Jorino S(s+1) 1—1/z ifx>1

Combining (2) and (1 ) we have
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We calculate the residue of the integrand of (1) at s = 1. Recall that {(s)
has a simple pole at s = 1, with residue 1. And trivially S(:—jl) is holomorphic
near 1. Therefore
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5. Let K C {Rs > L} be a compact set. Let L + 2¢ be a minimum for
R(K), so that Rs > L + 2¢ > L for every s € K. By assumption we can
choose N so that

1 n
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So when n > N, s € K and a,, # 0 we have
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Hence on K

> oo
E a,n”°| < g n17f < o0
n=N n=N

where € is independent of s. So Y7 | a,n"* is uniformly convergent on K.



