Solutions to 116 Homework 7

1. By definition, $i^i = e^{i \log i}$. Depending on which branch we pick, $\log i = i(\pi/2 + 2\pi k)$ for $k \in \mathbb{Z}$. So the possible values for i^i are

$$\{e^{-\pi/2 + 2\pi k} : k \in \mathbb{Z}\}$$

2. First suppose a > 1, and let Γ be the contour oriented counter-clockwise

Since c > 0, we have for all N sufficiently large

$$\int_{\Gamma} \frac{a^s}{s} ds = 2\pi i \operatorname{Res}_{s=0} \frac{a^s}{s} = 2\pi i$$

We wish to prove that the contour integrals over Γ_2 , Γ_3 and Γ_4 vanish as N tends to infinity. This will imply that

$$\lim_{N \to \infty} \int_{\Gamma} \frac{a^s}{s} ds = \lim_{N \to \infty} \int_{\Gamma_1} \frac{a^s}{s} ds = \lim_{N \to \infty} \int_{c-iN}^{c+iN} \frac{a^s}{s} ds$$

which proves the result for a > 1.

We calculate

$$\lim_{N \to \infty} \left| \int_{\Gamma_2 \cup \Gamma_4} \frac{a^s}{s} ds \right| \le 2 \lim_{N \to \infty} \frac{a^c}{N} * (\sqrt{N} + c) = 0$$

And

$$\lim_{N \to \infty} \left| \int_{\Gamma_3} \frac{a^s}{s} ds \right| \le \lim_{N \to \infty} \frac{a^{-\sqrt{N}}}{\sqrt{N}} * 2N = 0$$

Now take a < 1. We let Γ be the clockwise contour

By construction Γ contains no poles of $\frac{a^s}{s}$, so we have

$$\int_{\Gamma} \frac{a^s}{s} ds = 0$$

for every N.

As before it suffices to prove that, as $N \to \infty$, the integral tends to zero on the contours Γ_2 , Γ_3 and Γ_4 . We calculate

$$\lim_{N \to \infty} \left| \int_{\Gamma_2 \cup \Gamma_4} \frac{a^s}{s} ds \right| \le 2 \lim_{N \to \infty} \frac{a^c}{N} * (\sqrt{N} - c) = 0$$

And

$$\lim_{N \to \infty} \left| \int_{\Gamma_3} \frac{a^s}{s} ds \right| \le \lim_{N \to \infty} \frac{a^{\sqrt{N}}}{\sqrt{N}} * 2N = 0$$

3. Recall that $\zeta \neq 0$ on $\Re z \geq 1$. Let

$$\alpha = \min_{t \in [a,b]} |\zeta(1+it)| > 0$$

Since ζ is holomorphic on $\mathbb{C}-\{1\}$, ζ is uniformly continuous on the compact set K=[0,1]+i[a,b]. Choose δ so that if $z,w\in K$ and $|z-w|<\delta$, then $|\zeta(z)-\zeta(w)|<\alpha/2$. Then if $1-\delta<\sigma\leq 1$, we have

$$|\zeta(\sigma + it)| \ge |\zeta(1 + it)| - |\zeta(1 + it) - \zeta(\sigma + it)| > \alpha/2$$

Hence $\zeta \neq 0$ on $(1 - \delta, \infty) + i(a, b)$.

4. We wish to show that

$$\int_{c-i\infty}^{c+i\infty} \frac{x^s}{s(s+1)} \zeta(s) ds = \sum_{n=1}^{\infty} \int_{c-i\infty}^{c+i\infty} \frac{x^s}{s(s+1)} \frac{1}{n^s} ds$$
 (1)

This will follow by Fubini if we can show that both sides are absolutely convergent. In other words, we need

$$\int_{c-i\infty}^{c+i\infty} \sum_{n=1}^{\infty} \left| \frac{x^s}{s(s+1)} \frac{1}{n^s} ds \right| < \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \int_{c-i\infty}^{c+i\infty} \left| \frac{x^s}{s(s+1)} \frac{1}{n^s} ds \right| < \infty$$

Using that c is positive, we have

$$\left| \frac{x^s}{s(s+1)} \frac{1}{n^s} \right| = \frac{x^c}{n^c} \left| \frac{1}{s(s+1)} \right| \le x^c \frac{1}{n^c} \frac{1}{|s|^2}$$

Therefore it suffices prove that the integral over the right hand side is absolutely convergent.

$$\int_{c-i\infty}^{c+i\infty} \left| \frac{1}{s^2} ds \right| = \lim_{N \to \infty} \int_{-N}^{N} \frac{1}{c^2 + t^2} dt$$

$$= \lim_{N \to \infty} \frac{1}{c^2} \arctan(x/c) \Big|_{-N}^{N}$$

$$= \frac{\pi}{c^2}$$

And the claim follows.

Recall

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{x^s}{s(s+1)} ds = \begin{cases} 0 & \text{if } x \le 1\\ 1 - 1/x & \text{if } x \ge 1 \end{cases}$$
 (2)

Combining (2) and (1), we have

$$\int_{c-i\infty}^{c+i\infty} \frac{x^s}{s(s+1)} \zeta(s) ds = \sum_{n=1}^{\infty} \int_{c-i\infty}^{c+i\infty} \frac{(x/n)^s}{s(s+1)} ds$$
$$= 2\pi i \sum_{n \le x} 1 - n/x$$
$$= 2\pi i \lfloor x \rfloor \left(1 - \frac{\lfloor x \rfloor + 1}{2x} \right)$$

We calculate the residue of the integrand of (1) at s=1. Recall that $\zeta(s)$ has a simple pole at s=1, with residue 1. And trivially $\frac{x^s}{s(s+1)}$ is holomorphic near 1. Therefore

$$\operatorname{Res}_{s=1} \frac{x^s}{s(s+1)} \zeta(s) = \frac{x}{2} \operatorname{Res}_{s=1} \zeta(s) = \frac{x}{2}$$

5. Let $K \subset \{\Re s > L\}$ be a compact set. Let $L + 2\epsilon$ be a minimum for $\Re(K)$, so that $\Re s \geq L + 2\epsilon > L$ for every $s \in K$. By assumption we can choose N so that

$$L + \epsilon \ge \sup_{n > N} 1 + \frac{\log|a_n|}{\log n}$$

So when n > N, $s \in K$ and $a_n \neq 0$ we have

$$|a_n n^{-s}| \le |a_n| n^{-L-2\epsilon}$$

$$= n^{\frac{\log |a_n|}{\log n} - L - 2\epsilon}$$

$$\le n^{-1-\epsilon}$$

Hence on K

$$\left| \sum_{n=N}^{\infty} a_n n^{-s} \right| \le \sum_{n=N}^{\infty} n^{-1-\epsilon} < \infty$$

where ϵ is independent of s. So $\sum_{n=1}^{\infty} a_n n^{-s}$ is uniformly convergent on K.