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Abstract. We introduce a diagrammatic braided monoidal category, the quantum spin Brauer
category, together with a full functor to the category of finite-dimensional, type 1 modules for
Uq(so(N)) or Uq(o(N)). This functor becomes essentially surjective after passing to the idempotent
completion. The quantum spin Brauer category can be thought of as a quantum version of the
spin Brauer category introduced in [MS24]. Alternatively, it is an enlargement of the Kauffman
category, obtained by adding a generating object corresponding to the quantum spin module.

1. Introduction

For the orthogonal groups, the analogue of Schur–Weyl duality involves the statement that there
is a surjective algebra homomorphism

Brr → EndO(V )(V
⊗r),

where Brr is the Brauer algebra on r strands. The quantum version of this statement is that there
is a surjective algebra homomorphism

(1.1) BMWr → EndUq(o(N))(V
⊗r),

where BMWr is the Birman–Murakami–Wenzl (BMW) algebra on r strands, Uq(o(N)) = Uq(so(N))⋊
(Z/2Z) is the quantized enveloping algebra, and V is the quantum analogue of the natural module
for the orthogonal group O(V ), with N = dimV .

More recently, these statements have been incorporated into a more comprehensive approach,
where one considers morphisms between different powers of the natural module V and rephrases
the results in terms of monoidal categories. More precisely, there is a full and essentially surjective
functor

(1.2) B(N) → O(V )-mod,

where B(N) is the Brauer category. See, for example, [LZ15, Th. 4.8]. The category B(N) is defined
for any choice of the parameter N ∈ C. Its additive Karoubi envelope is Deligne’s interpolating
category for the orthogonal groups [Del07]. In the quantum setting, there is a full functor

(1.3) K (N) → Uq(so(N))-mod,

where K (N) is the Kauffman category. See [Tur89, §7.7] for a definition of the Kauffman category
and [GRS22, Prop. 4.1] for the definition of the above functor. Fullness can be deduced from the
surjectivity of (1.1).

The functor (1.3) is not essentially surjective because its image does not contain the quantum
analogue of the spin module. The same issue occurs if we replace the orthogonal group in (1.2) by
its double cover, the pin group Pin(V ) or the identity component, the spin group Spin(V ). The goal
of the current paper is to resolve this problem by enlarging the category K (N) to take the quantum
spin module S into account. A first step in this direction was taken by Wenzl [Wen12, Wen20],
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who described the endomorphism algebra of S⊗r in terms of coideal subalgebras, also known as
iquantum groups; see Remark 2.13. Other partial results were obtained in [OW02, Wen12, Abo22],
and the special case N = 7 was treated in [Wes08].

The non-quantum setting was considered in [MS24], where the Brauer category was enlarged to
the spin Brauer category. One then has a full and essentially surjective functor from the spin Brauer
category to the category of modules of the spin or pin groups. The results of the current paper can
be viewed as quantum analogues of those results. We introduce the quantum spin Brauer category
QSB(q, t, κ, dS), where the parameters q, t, κ, dS are elements of the ground ring. The definition
of this strict monoidal category is diagrammatic, given via a presentation in terms of generators
and relations. While the Kauffman category has one generating object, which should be thought
of as a formal version of the quantum analogue of the natural module, the quantum spin Brauer
category (which might also be a called the spin Kauffman category) has an additional generating
object corresponding to the quantum spin module. The parameter dS corresponds to the quantum
dimension of this additional object. In Theorem 6.1, we define a functor

(1.4) F : QSB(N) → Uq(N)-mod,

where QSB(N) is the quantum spin Brauer category at certain values of the parameters (see (6.2))
and

Uq(N) =

{
Uq(so(N)) if N is odd,
Uq(so(N))⋊ (Z/2Z) if N is even.

In the case where N is even (type D), the nontrivial element of Z/2Z acts on Uq(so(N)) by the
nontrivial Dynkin diagram automorphism. This construction is a quantum version of the pin group,
for which there is only one spin module. We show that the functor F is full (Theorem 7.10) and
essentially surjective after passing to the additive Karoubi envelope (Theorem 8.5). The subcategory
of QSB in which we omit the braiding morphisms for two copies of the spin module is an interpolating
category for the categories of Uq(N)-modules (Theorem 8.7).

The constructions of the current paper open some natural directions for future research. Since
QSB is a braided monoidal category, one can apply the general affinization procedure of [MS21] to
define a quantum affine spin Brauer category. Roughly speaking, this corresponds to considering
quantum spin Brauer string diagrams on the cylinder. This affine category acts on the category of
Uq(N)-modules and provides tools for investigating the translation functors given by tensoring with
the quantum spin and vector modules. In the non-quantum setting, the affine spin Brauer category
was studied in [MS24, §9].

It would also be interesting to explore the precise connection between the quantum spin Brauer
category and various web categories in types B and D that have recently appeared in the literature.
The goal of web categories is closely related to the goals of the current paper. Namely, one aims to
give a presentation of a module category by generators and relations. The main difference is that
web categories typically contain more generating objects (e.g., a generating object for each exterior
power of the natural module) and generating morphisms, and one is often able to give a complete
presentation, including a complete set of relations. Thus, the categories are more complicated but
give a more complete description. In contrast, the quantum spin Brauer category is quite simple, but
one does not have a complete presentation of Uq(N)-mod until one explicitly describes the kernel of
the functor (1.4). Webs for the quantum analogues of orthogonal groups were described in [BW23],
but the spin module was excluded there (as in (1.2)). In type B, the theory of webs, including the
spin module, was partially developed in [BER24]. It would be interesting to precisely describe the
connection between the quantum spin Brauer category and the web categories developed in those
papers. Roughly speaking, this should involve passing to a partial idempotent completion of the



THE QUANTUM SPIN BRAUER CATEGORY 3

quantum spin Brauer category, where one adds in an object corresponding to each of the quantum
antisymmetrizer idempotents given in Section 3.

Other work that is somewhat related to ours is [ST19], which develops diagrammatics for the
representation categories of various coideal subalgebras by enlarging the known web categories in
type A, developed in [CKM14]. In some sense, [ST19] goes in the opposite direction as the current
paper, seeing usual quantized enveloping algebras appear in diagrammatic endomorphism algebras
of modules over coideal subalgebras, whereas we see coideal subalgebras appear as diagrammatic
endomorphism algebras of modules over usual quantized enveloping algebras (see Remark 2.13).

Acknowledgements. The research of A.S. was supported by Discovery Grant RGPIN-2023-03842
from the Natural Sciences and Engineering Research Council of Canada. The authors would like to
thank Elijah Bodish and Weiqiang Wang for helpful conversations. Many algebraic computations
and verifications were done using SageMath [Sage].

2. The quantum spin Brauer category

In this section, we introduce our main category of interest. We work over an arbitrary commu-
tative ring k and use the usual string diagram calculus for strict monoidal categories. Throughout
this paper, N denotes a natural number and n = ⌊N2 ⌋, so that N = 2n (type D) or N = 2n + 1
(type B).

Definition 2.1. Suppose dS ∈ k and q, t, κ ∈ k×, such that q−q−1 ∈ k×. The quantum spin Brauer
category, or spin Kauffman category, QSB = QSB(q, t, κ, dS) is the strict k-linear monoidal category
presented as follows. The generating objects are S and V, whose identity morphisms we depict by
a thin black strand and a thick blue strand:

:= 1S, := 1V.

The generating morphisms are

: S⊗ S → 1, : 1 → S⊗ S, : V ⊗ V → 1, : 1 → V ⊗ V,

, : S⊗ S → S⊗ S, , : V ⊗ V → V ⊗ V,

, : V ⊗ S → S⊗ V, , : S⊗ V → V ⊗ S,

: V ⊗ S → S.

To state the defining relations, we will use the convention that a relation involving r ≥ 1 red strands
(as in (2.1) and (2.2)) means we impose the 2r relations obtained from replacing each such strand
with either a black strand or a blue strand. The defining relations on morphisms are then as follows:

= = , = , = , = ,(2.1)

= = ,(2.2)

− = (q − q−1)

(
−

)
,(2.3)

= t , = κ2 ,(2.4)

= , = , = , = ,(2.5)

= ,(2.6)
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= κ ,(2.7)

+ q =
(
qκ2 + 1

)
,(2.8)

= dS11, = dV11, where dV =
κ−2 − κ2

q − q−1
+ 1 =

(qκ2 + 1)(κ−2 − q−1)

q − q−1
.(2.9)

This concludes the definition of QSB.

Remark 2.2. The assumption that q − q−1 be invertible is needed in (2.9). In Section 6, when we
define an incarnation functor to a category of modules, we will specialize κ to be a power of q. Then
dV is a Laurent polynomial in q and the definition of QSB makes sense without the assumption that
q − q−1 is invertible. In particular, we could then specialize q = 1.

Remark 2.3. Note the asymmetry in Definition 2.1 with regards to the roles played by dS and dV.
While dS is left as a parameter, dV is written in terms of the other parameters in (2.9). This is
because adding a cap to the top of the skein relation (2.3), then using (2.4) and the second relation
in (2.9) shows that, in order for QSB to not collapse to the zero category, we need

κ2 − κ−2 = (q − q−1)(1− dV).

Since we have no skein relation for the object S, we do not get any analogous restriction on dS.

Remark 2.4. One can justify the presence of the factor of qκ2 +1 in (2.8) in two ways. First note
that, using (2.4), one can rewrite (2.8) as(

−
)
◦
(

+ q
)
= 0,

and + q is the quantum symmetrizer (up to a scalar multiple). The second justification is
that the factor of qκ2 + 1 is needed to have a natural bar involution on the quantum spin Brauer
category; see Proposition 2.9.

Remark 2.5. At least one of the relations in (2.1) is redundant. Using (2.3) and the fourth equality
in (2.1) for blue strands, we have

(2.3)
=

(2.2)
+ (q − q−1)

(
−

) (2.1)
= + (q − q−1)

(
−

) (2.3)
=

(2.2)
.

implying the last relation in (2.1) for blue strands. Note that a similar argument does not work
for black strands, since we do not have an analogue of the skein relation (2.3) in that case. In
Definition 2.1, we include the fourth and fifth relations in (2.1) for all colours of the strands since,
in practice, these relations are easy to verify—they follow immediately from the fact that we work
in a braided monoidal category. See the proof of Theorem 6.1.

The relations (2.2) imply that QSB is a rigid monoidal category, with the objects S and V being
self-dual. The relations (2.1) and (2.5) imply that QSB is braided monoidal, with braiding given by
the crossings. Then (2.6) implies that QSB is strict pivotal, with duality given by rotating diagrams
through 180◦. This means that diagrams are isotopy invariant, and so rotated versions of all the
defining relations hold. For example, we have

= , = , = tS , = κ2 , = = .

Throughout this document, we will refer to a relation by its equation number even when we are, in
fact, using a rotated version of that relation. Composing the relations in (2.4) on the bottom with
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and respectively, then using (2.1), we get

(2.10) = t−1 , = κ−2

We introduce other trivalent morphisms by successive clockwise rotation:

(2.11) := , := , := , := , := .

Since QSB is strict pivotal, the trivalent morphisms are also related in the natural way by counter-
clockwise rotation:

(2.12) = , = , = , = , = , = .

Lemma 2.6. If
Z

X Y

: X ⊗ Y → Z

is any morphism in a ribbon category, then

(2.13)

Z

YX

=

Z

YX

.

Proof. To simplify diagrams, we will omit the object labels and colour the strands. (The colours
here do not have the same meaning as in QSB.) We have

= = = .

Now compose on the bottom with to get

= .

Finally, compose on the bottom with and on the top with to obtain

= . □

Lemma 2.7. We have

= κ , = κ−1 , = κ , = κ−1 ,(2.14)

= tκ−1 , = t−1κ .(2.15)

Proof. The first relation in (2.14) is simply a rewriting of (2.7), using (2.12). Then, composing on
the bottom of the first relation in (2.14) with and using the second relation in (2.1) gives the
second relation in (2.14). Next, we have

κ =
(2.13)
=

(2.4)
=

(2.10)
κ2 ,
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where, in the first equality above, we used the first relation in (2.14). This proves the third relation
in (2.14). The fourth relation in (2.15) then follows after composing on the bottom with and
using (2.1).

For the first relation in (2.15), we compute

(2.5)
=

(2.4)
= t

(2.7)
= tκ−1 .

The second relation in (2.15) then follows after composing on the bottom with and using the
second relation in (2.1). □

Next we explore some symmetries of the quantum spin Brauer category.

Proposition 2.8. There is an isomorphism of k-linear monoidal categories

Ω↕ : QSB(q, t, κ, dS) → QSB(q, t, κ, dS)
op

given on objects by V 7→ V, S 7→ S, and on the generating morphisms by

7→ , 7→ , 7→ , 7→ , 7→ ,

7→ , 7→ , 7→ , 7→ ,

7→ , 7→ , 7→ , 7→ ,

Proof. It is a straightforward computation to show that Ω↕ preserves the defining relations of
QSB(q, t, κ, dS). For example,

Ω↕

( )
=

(2.14)
= κ = Ω↕

( )
,

showing that Ω↕ respects (2.7). The verifications of the remaining relations in Definition 2.1 are
analogous. □

Proposition 2.9. There is an isomorphism of k-linear monoidal categories

QSB(q, t, κ, dS)
∼=−→ QSB(q−1, t−1, κ−1, dS),

which we call the bar involution, given by flipping all crossings in a diagram. More precisely, the
bar involution is given on objects by S 7→ S, V 7→ V, and on morphisms by

7→ , 7→ , 7→ , 7→ , 7→ ,

7→ , 7→ , 7→ , 7→ ,

7→ , 7→ , 7→ , 7→ .

Proof. We need to verify that the defining relations of Definition 2.1 hold with all crossings flipped
and q, t, and κ replaced by q−1, t−1, and κ−1, respectively. For most of the relations, these follow
immediately from what we have already seen. For example, for (2.4) and (2.7), it follows from (2.10)
and (2.14), respectively. The most involved relation to check is (2.8), where we need to verify that

(2.16) + q−1 =
(
q−1κ−2 + 1

)
.

To see this, we compose (2.8) on the bottom with , multiply both sides by q−1, and then use
(2.1) and (2.10). We leave the verification of the remaining relations to the reader. □

It will sometimes be convenient to draw horizontal strands. Since QSB is strict pivotal, the
meaning of diagrams containing such strands in unambiguous. For example,

(2.17) = = = = .
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Lemma 2.10. If qκ2 + 1 is invertible, then

(2.18) = dV .

Proof. We compute

(qκ2 + 1)
(2.4)
= + q

(2.8)
=
(
qκ2 + 1

) (2.9)
=
(
qκ2 + 1

)
dV . □

Lemma 2.11. If qκ2 + 1 is invertible, then

(2.19) =
κ

qκ2 + 1

(
+ q

)
, =

κ

qκ2 + 1

(
+ q

)
.

Proof. By (2.8), we have

(2.20) (qκ2 + 1) = + q .

Then the first equation in (2.19) follows after composing on the bottom with and using (2.1),
(2.5) and (2.14). Similarly, the second equation in (2.19) follows after composing (2.20) on the top
with . □

As a corollary of (2.19), we have the skein relation

(2.21) − =
κ(q − 1)

qκ2 + 1

(
−

)
.

Lemma 2.12. We have

(2.22) + (q + q−1) + = (qκ2 + 1)(q−1κ−2 + 1) .

Proof. We have

+ (q + q−1) +
(2.19)
= (q−1κ−1 + κ)

(
q +

)
(2.5)
= (q−1κ−1 + κ)

(
q +

)
(2.8)
= (qκ2 + 1)(q−1κ−1 + κ)

(2.14)
= (qκ2 + 1)(q−1κ−2 + 1) ,

where, in the second equality, we used the bar involution applied to (2.19). □

Remark 2.13. The image of under the incarnation functor to be defined in Section 6 is given in
Lemma 7.2. The image of the relation (2.22) under the incarnation functor corresponds to [Wen20,
Prop 4.2]. As noted in [Wen20], this implies that one has an action on S⊗r of the coideal subalgebra
U ′
q(sor) of Uq(glr) introduced in [GK91] and further studied in [NS95, Let97].

3. The quantum antisymmetrizer

In this section we prove some results about the quantum spin Brauer category that will be used
in the sequel. Throughout this section, we assume that k is a field, and we fix q, t, κ ∈ k× such that
q is not a root of unity. We also assume that

(3.1) q2r−1κ2 + 1 ̸= 0 for all r ∈ N.
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It will be convenient to introduce a shorthand for multiple strands:

(3.2) 0 := 11, r := · · ·
r

, r ≥ 1.

Definition 3.1. Define the quantum antisymmetrizer

(3.3) r :=
r

r

r , r ≥ 0

(where we label the strands by r when we wish to emphasize how many there are), recursively by

0 := 11, 1 := ,(3.4)

r+1 =
1

[r + 1]

qr r − [r] r−1
r

r

− qr − q−r

1 + q1−2rκ−2
r−1

r

r

 , r ≥ 1.(3.5)

Since (3.4) and (3.5) are invariant under the functor Ω↕ of Proposition 2.8, we have

(3.6) Ω↕

(
r

)
= r .

In order to keep diagrams as uncluttered as possible, we will often omit the label on a strand when
this label is uniquely determined by the rest of the diagram. For instance, in the diagram

s

r , where 0 ≤ s ≤ r,

we have omitted the label on the top-right strand, since this label is forced to be r − s.

Proposition 3.2. We have

s r−s−2

r = −q−1 r =
s r−s−2

r , 0 ≤ s ≤ r − 2,(3.7)

s r−s−2

r = 0 =
s r−s−2

r , 0 ≤ s ≤ r − 2,(3.8)

u r−s−u

r

s

= r =
u r−s−u

r

s
, u ≥ 0, 0 ≤ s ≤ r − u.(3.9)

Proof. First note that the second equality in (3.7) follows from the first equality in (3.7) after
applying Ω↕ and using (3.6). Similarly, each of the second equalities in (3.8) and (3.9) follow from
the first ones. In addition, if (3.7) holds, then we have

s r−s−2

r
(2.4)
= κ−2

s r−s−2

r
(3.7)
= −q−1κ−2

s r−s−2

r

By our assumption (3.1), 1 + q−1κ−2 is invertible, and so the first equality in (3.8) follows. Thus,
it suffices to prove the first equalities in (3.7) and (3.9).
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For m ≥ 0, let P (m) be the statement that the first equalities in (3.7) and (3.9) hold for all
r ≤ m and all s, u satisfying the given inequalities. Using (2.1), the equalities (3.7) are equivalent
to

(3.10)
s r−s−2

r = −q r =
s r−s−2

r .

For r ∈ {0, 1}, (3.7) is vacuous, and (3.9) is trivially satisfied. For r = 2, (3.7) and (3.9) are easily
verified using the explicit form

(3.11) 2 =
1

[2]

(
q − − q − q−1

1 + q−1κ−2

)
.

Thus, P (2) is true.
Now suppose that m ≥ 2, and that P (m) is true. We have

(3.12)
m−1

m
(3.5)
=

1

[m]

qm−1
m−1 − [m− 1] m−2

m−1

m−1

− qm−1 − q1−m

1 + κ−2q3−2m
m−1


(2.9)
=

(2.10)

1

[m]

(
qm−1dV − κ−2[m− 1]− qm−1 − q1−m

1 + κ−2q3−2m

)
m−1

=
(κ−2q3−m − κ2qm−1)(1 + κ−2q1−2m)

(qm − q−m)(1 + κ−2q3−2m)
m−1 .

We also have

(3.13)
m−1

m =
1

[m]

κ2qm−1
m−1 − [m− 1] m−2

m−1

m−1

− qm−1 − q1−m

1 + κ−2q3−2m
m−2

m−1

m−1

 ,

which implies, using P (m), that

(3.14) m−1
m

m

=
1

[m]

(
κ2qm−1 +

qm − q2−m

1 + κ−2q3−2m

)
m−1

m =
qm + κ2qm−1

[m](1 + κ−2q3−2m)

m−1

m .

We now prove the first equality in (3.7) for r = m + 1. When s < m − 1, this equality follows
easily from (3.5) and the induction hypothesis. To prove that it holds for s = m − 1, we first use
the r = m − 1 case of (3.5) on the top antisymmetrizer in the middle term on the right-hand side
of the r = m case of (3.5) to see that

(3.15) m+1 =
1

[m+ 1]

qm m − qm−1 m−1

m
+ [m− 1] m−2

m

m−1

+
q2−m − qm

1 + κ−2q3−2m
m−2

m

m−1

− qm − q−m

1 + κ−2q1−2m
m−1

m

m

 .
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Thus, using the inductive hypothesis P (m), we have

m−1

m+1 =
1

[m+ 1]

qm m−1

m
− qm−1 m−1

m
+ [m− 1] m−2

m

m−1

+
q−m − qm−2

1 + κ−2q3−2m
m−2

m

m−1

− qm − q−m

1 + κ−2q1−2m
m−1

m−1

m

m


(2.3)
=

(3.13)

1

[m+ 1]

−qm−1 m + qm−2 m−1

m
− q−1[m− 1] m−2

m

m−1

+

(
(qm − qm−2)κ2 − qm − q−m

1 + κ−2q1−2m

κ2qm−1

[m]

)
m−1

m
+

qm − q−m

1 + κ−2q1−2m

[m− 1]

[m]
m−2

m

m−1

+

(
q2−m − qm

1 + κ−2q3−2m
+

1

[m]

qm − q−m

1 + κ−2q1−2m

qm−1 − q1−m

1 + κ−2q3−2m

)
m−2

m

m−1


=

1

[m+ 1]

−qm−1 m + qm−2 m−1

m
− q−1[m− 1] m−2

m

m−1

+
q−m(q − q−1)

1 + κ−2q1−2m

m−1

m
+
qm−1 − q1−m

1 + κ−2q1−2m
m−2

m

m−1

+
q−m − qm−2

1 + κ−2q1−2m
m−2

m

m−1

 .

Therefore, using (3.15), we have

(3.16) [m+ 1]
q(1 + κ−2q1−2m)

q1 − q−1

 m−1

m+1 + q−1
m+1


= q1−m m−1

m
+
q3−2mκ−2(qm−1 − q1−m)

(1 + κ−2q3−2m)
m−2

m

m−1

− [m− 1] m−2

m

m−1

− [m] m−1
m

m

.

On the other hand, we have

[m]
m−1

m (3.5)
= qm−1

m−1 − [m− 1] m−2
m−1

m−1

− qm−1 − q1−m

1 + κ−2q3−2m
m−2

m−1

m−1

(2.3)
= q1−m

m−1 − [m− 1] m−2
m−1

m−1

+
q3−2mκ−2(qm−1 − q1−m)

1 + κ−2q3−2m
m−2

m−1

m−1

.
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Composing on the bottom with

m−1

m

and using (3.9) for r = m then gives that the right-hand side of (3.16) is zero. This completes the
proof of the first equality in (3.7) for r = m+ 1.

Finally, we show that the first equality in (3.9) holds for r = m+ 1. Since the relation is trivial
when s ≤ 1, we assume that s ≥ 2. Then, using the inductive hypothesis P (m), we have

u m+1−s−u

m+1

s (3.5)
=

1

[s]

qs−1
m+1 − [s− 1] s−2

u m+1−s−u

m+1

s−1


=

1

[s]
(qs−1 + q−1[s− 1]) m+1 = m+1 ,

as desired. □

Remark 3.3. It follows from (3.9) that the quantum antisymmetrizer is idempotent. The analogous
idempotent in the Birman–Murakami–Wenzl (BMW) algebra is well known. See for, example,
[DHS13, §3] and [HS99, §4]. The recursion (3.5) resembles [TW05, (7.12)], except that the expression
there seems to have an error: the numerator of [m]q there should be qm − q−m. Note that our use
of the term quantum antisymmetrizer does not agree with the use of this term in [DF94].

Lemma 3.4. We have

(3.17) r = r = r , r ≥ 0.

Proof. We prove the result by induction on r. The result clearly holds for r ∈ {0, 1}. For the
induction step, it suffices to show that the quantum antisymmetrizer satisfies the rotated version of
the recursion (3.5):

r+1 =
1

[r + 1]

qr r − [r] r−1
r

r

− qr − q−r

1 + q1−2rκ−2
r−1

r

r

 , r ≥ 1.

This follows from composing both sides of (3.5) on top and bottom by

r and r
,

respectively, then using (2.1), (2.4), (2.10) and (3.7). □

Lemma 3.5. We have

(3.18) r =
κ2qr + q1−r

κ2 + q

r∏
s=1

κ−2q2−s − κ2qs−2

qs − q−s
11, r ∈ N,

where we interpret the right-hand side as 11 when r = 0.

Proof. This is a straightforward induction using (3.12). □
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Remark 3.6. When κ2 = q1−N , the right-hand side of (3.18) becomes

(3.19)
qr−N + q−r

1 + q−N

[N ]!

[r]![N − r]!
11 =

([
N − 1
r

]
+

[
N − 1
r − 1

])
11,

where [a]! and
[
a
b

]
are quantum factorials and quantum binomial coefficients, respectively. (See

Section 4.1.) This specializes, at q = 1, to
(
N
r

)
11.

Proposition 3.7. We have

(3.20) r = 0 for all r > 0.

Proof. We have

dV
r

r

r

(2.18)
=

r

r

r

(2.19)
= −q

r

r−1

r
+
qκ2 + 1

κ
r

r−1

r

(2.19)
= q2

r

r−2 2

r
− q

qκ2 + 1

κ
r

r−2

r
+
qκ2 + 1

κ
r

r−1

r

= · · · = (−q)r

r

r

r
+
qκ2 + 1

κ

r−1∑
s=0

(−q)s

r

r−s−1 s

r

(3.10)
=

(2.5)
(−q)r

r

r

r
+
qκ2 + 1

κ

r−1∑
s=0

q2s

r

r−1

r

(2.18)
=

(2.14)

(
(−q)rdV + qr−1(qκ2 + 1)[r]

)
r

r

r
.

Thus ((
(−q)r − 1

)
dV + (qrκ2 + qr−1)[r]

)
r

r

r
= 0.

Note that (
(−q)r − 1

)
dV + (qrκ2 + qr−1)[r] =

(
qκ2 + 1

)(
κ−2 − (−q)r−1

)(
1− (−q)r

)
q − q−1

.

Our assumption that q is not a root of unity implies that the factor 1− (−q)r is nonzero, while the
assumption (3.1) implies that the factor qκ2 + 1 is nonzero. Furthermore, the assumption that q is
not a root of unity, together with (3.1), implies that κ2 ̸= (−q)1−r. The result follows. □

Next, we prove two technical lemmas needed in the proof of Proposition 3.10.
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Lemma 3.8. For 1 ≤ s ≤ r, we have

(3.21)
s−1

s

r

=
(qκ2 + 1)(q1−sκ−2 − qs−2)

qs − q−s
r

+
[s− 1]

[s]

q2s−4κ2 + q

q2s−3κ2 + 1 s−2
s−1

r

.

Proof. We compute

s−1

s

r

(3.5)
=

1

[s]


qs−1 s−1

r

− [s− 1] s−2

s−1

s−1

r

− qs−1 − q1−s

1 + q3−2sκ−2
s−2

s−1

s−1

r



(3.9)
=

(2.18)

1

[s]


qs−1dV

r
− [s− 1]

s−2
r−s+1

s−1

r

− qs−1 − q1−s

1 + q3−2sκ−2 s−2
s−1

r



(2.16)
=

(3.9)

1

[s]


(
qs−1dV − [s− 1](κ−2 + q)

)
r

+

(
q[s− 1]− qs−1 − q1−s

1 + q3−2sκ−2

)
s−2

s−1

r

 .

Then the result follows after simplifying the coefficients. □

Lemma 3.9. For 1 ≤ s ≤ r, we have

(3.22)
s−1

s

r

=
(q−1κ−2 + 1)(q2−s − κ2)(q2−s + κ2)

(q − q−1)(q3−2s + κ2) r
.

Proof. We prove the result by induction on s. When s = 1, (3.22) becomes

r

= dV
r

,

which holds by (2.18). The inductive step follows from Lemma 3.8 and the fact that

(qκ2 + 1)(q1−sκ−2 − qs−2)

qs − q−s
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+
[s− 1]

[s]

q2s−4κ2 + q

q2s−3κ2 + 1

(q−1κ−2 + 1)(q2−(s−1) − κ2)(q2−(s−1) + κ2)

(q − q−1)(q3−2(s−1)) + κ2)

=
(q−1κ−2 + 1)(q2−s − κ2)(q2−s + κ2)

(q − q−1)(q3−2s + κ2)
. □

Proposition 3.10. For r ≥ 0, we have

(3.23)
r+1

=
(qκ2 + 1)(κ−2 − q2r−2κ2)

(q − q−1)(q2r−1κ2 + 1) r
=

(
dV − qr−1[r](qκ2 + 1)

q2r−1κ2 + 1

)
r

.

Proof. We compute

r+1

(3.5)
=

1

[r + 1]

q
r

r

− [r]
r−1

r

r

− qr − q−r

1 + q1−2rκ−2 r−1

r

r



(2.18)
=

1

[r + 1]


qrdV

r
− [r]

r−1

r

r

− qr − q−r

1 + q1−2rκ−2 r−1

r

r



(2.16)
=

(3.9)

1

[r + 1]


(
qrdV − [r](κ−2 + q)

)
r

+

(
q[r]− qr − q−r

1 + q1−2rκ−2

)
r−1

r

r

 .

The result then follows after applying the s = r case of (3.22) and simplifying the resulting coeffi-
cient. □

Corollary 3.11. We have

(3.24)
r

=

(
dS

r−1∏
i=0

(
dV − qr−1[r](qκ2 + 1)

q2r−1κ2 + 1

))
11, r ∈ N,

where we interpret the right-hand side as dS11 when r = 0.

Proof. This is a straightforward induction, using Proposition 3.10 and the first relation in (2.9). □

We conclude this section with a lemma that will be used in Section 7.

Lemma 3.12. We have

= 0,(3.25)
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= dVd
2
S.(3.26)

Proof. Equation (3.25) follows from the r = 1 case of Proposition 3.7. To prove (3.26), we first
compute

(3.27) 0
(3.20)
= [2]

2

(3.11)
= q − − q − q−1

1 + q−1κ−2

(2.18)
= q − − q − q−1

1 + q−1κ−2
dV .

On the other hand, we also have

(3.28) + q
(2.8)
= (qκ2 + 1) .

Adding q times (3.27) to (3.28) gives

(3.29) (1 + q2) =

(
qκ2 + 1 +

q2 − 1

1 + q−1κ−2
dV

)
(2.9)
=

(
qκ2 + 1 +

q2 − 1

1 + q−1κ−2
dV

)
dS .

We also have

qκ2 + 1 +
q2 − 1

1 + q−1κ−2
dV

(2.9)
= qκ2 + 1 + q2κ2(κ−2 − q−1) = 1 + q2.

Since q2 ̸= −1, we can cancel the common factor in (3.29) to get

= dS .

Therefore

= dS
(2.18)
=

(2.9)
dVd

2
S. □

4. The quantized enveloping algebra

In this section and the next, we collect important definitions and properties of the quantized
enveloping algebras associated to the orthogonal groups O(N). Throughout this section we work
over the field

k = C
(
q±

1
4
)
.

Recall that n = ⌊N2 ⌋, so that N = 2n (type Dn) or N = 2n+ 1 (type Bn).

4.1. Definition of the quantized enveloping algebra. We briefly recall the definition of the
quantized enveloping algebra in types Bn and Dn. We choose the following labelling of the nodes
of the Dynkin diagrams:

(4.1) Bn :
1 2 3 n

Dn :

1

2

3 4 n

We normalise the pairing (·, ·) on the weight lattice
⊕n

i=1 Zϵi so that the long roots α satisfy
(α, α) = 2. Thus

(4.2) (ϵi, ϵj) = δij ,
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and the simple roots are given by

(4.3) αi = ϵi − ϵi−1, 2 ≤ i ≤ n, α1 =

{
ϵ1 + ϵ2 if N = 2n (type Dn),
ϵ1 if N = 2n+ 1 (type Bn).

The positive roots are

(4.4) Φ+ =

{
{ϵi ± ϵj : 1 ≤ j < i ≤ n} if N = 2n (type Dn),
{ϵi ± ϵj , ϵk : 1 ≤ j < i ≤ n, 1 ≤ k ≤ n} if N = 2n+ 1 (type Bn).

Let (aij)
n
i,j=1, be a Cartan matrix of type Bn or Dn. More precisely,

aij = 2
(αi, αj)

(αi, αi)
,

where the αi are the simple roots, and (aij)i,j∈I is

2 −2 0 0 0 · · · 0
−1 2 −1 0 0 · · · 0
0 −1 2 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 −1 2 −1 0
0 · · · · · · 0 −1 2 −1
0 · · · · · · · · · 0 −1 2


or



2 0 −1 0 0 · · · 0
0 2 −1 0 0 · · · 0
−1 −1 2 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 −1 2 −1 0
0 · · · · · · 0 −1 2 −1
0 · · · · · · 0 0 −1 2


in type Bn or Dn, respectively.

Set di =
(αi,αi)

2 . So, in type Bn, we have d1 = 1
2 and di = 1 for 2 ≤ i ≤ n. In type Dn, we have

di = 1 for all 1 ≤ i ≤ n. For 1 ≤ i ≤ n, define the following elements of Z[q±
1
2 ]:

qi := qdi , [m]i :=
qmi − q−m

i

qi − q−1
i

, m ∈ Z,

[m]!i := [m]i[m− 1]i · · · [1]i,
[
m
r

]
i

=
[m]!i

[r]!i[m− r]!i
, m, r ∈ N, r ≤ m.

When di = 1, we will often drop the subscripts i above. In this case, the [m] are referred to

as quantum integers and the
[
m
r

]
as quantum binomial coefficients. A straightforward proof by

induction yields the following generating function for the quantum binomial coefficients:

(4.5)
m∏
j=1

(
1 + q2j−m−1x

)
=

m∑
k=0

[
m
k

]
xk, m ∈ N.

Definition 4.1. When N = 2n + 1, n ≥ 1, let Uq(N) be the k-algebra generated by ei, fi, k
±1
i ,

1 ≤ i ≤ n, subject to the following relations for 1 ≤ i, j ≤ n:

kik
−1
i = 1 = k−1

i ki, kikj = kjki,(4.6)

kiej = q(αi,αj)ejki = q
aij
i ejki, kifj = q−(αi,αj)fjki = q

−aij
i fjki,(4.7)

eifj − fjei = δij
ki − k−1

i

qi − q−1
i

,(4.8)

1−aij∑
r=0

(−1)r
[
1− aij
r

]
i

e
1−aij−r
i eje

r
i ,

1−aij∑
r=0

(−1)r
[
1− aij
r

]
i

f
1−aij−r
i fjf

r
i , i ̸= j.(4.9)
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(The second and fourth equalities in (4.7) follow from the fact that q(αi,αj) = q
aij
i .)

When N = 2n, n ≥ 2, let Uq(N) be the k-algebra defined as above, but with an additional
generator σ subject to the relations

(4.10) σ2 = 1, σeiσ = eσ(i), σfiσ = fσ(i), σk±1
i σ = k±1

σ(i),

where, in the subscripts, σ acts as the simple transposition (1 2) on the set {1, 2, . . . , n}.
For N = 2n+ 1, Uq(N) is a Hopf algebra, with comultiplication, antipode, and counit given by

∆(ei) = ei ⊗ ki + 1⊗ ei, ∆(fi) = fi ⊗ 1 + k−1
i ⊗ fi, ∆(k±1

i ) = k±1
i ⊗ k±1

i ,(4.11)

ι(ei) = −eik−1
i , ι(fi) = −kifi, ι(k±1

i ) = k∓1,(4.12)
ϵ(ei) = 0, ϵ(fi) = 0, ϵ(ki) = 1.(4.13)

We use the notation ι to denote the antipode in order to reserve the notation S for the spin
module, to be introduced later. When N = 2n, Uq(N) is again a Hopf algebra, extending the above
definitions by

(4.14) ∆(σ) = σ ⊗ σ, ι(σ) = σ−1 = σ, ϵ(σ) = 1.

Remark 4.2. (a) We draw the attention of the reader to some choices we have made that differ
from some places in the literature. First, we have chosen the labelling of the nodes of the Dynkin
diagrams in (4.1) to be compatible with the embedding of Bn and Dn inside Bn+1 and Dn+1,
respectively. Second, we have normalized the pairing on the root lattice so that the long roots α
satisfy (α, α) = 2, whereas it is usually normalized so that the short roots have this property. Thus,
in type Bn, our Uq(2n+1) would usually be denoted Uq1/2(so(2n+1)). Our choice of normalization
of the pairing allows us to state various result in the paper in a more uniform way.

(b) In type Dn, our Uq(2n) is a smash product of the usual quantized enveloping algebra
Uq(so(2n)) with the group algebra k[σ]/(σ2 − 1) of the cyclic group of order two, with conju-
gation by σ acting by the outer automorphism of Uq(so(2n)) that swaps the vertices 1 and 2 of
the Dynkin diagram and fixes all other vertices. This extension, sometimes denoted Uq(o(N)), is
analogous to considering the pin group instead of the spin group; see [MS24, (4.23)].

(c) For the Hopf algebra structure defined in Definition 4.1, we have followed the conventions
of [CP95, Def.-Prop. 9.1.1], which also matches [BER24, §3.1]. Note that a different Hopf algebra
structure is chosen in [DF94, Def. 2.1.1], while yet another is chosen in [Hay90, §1.1]. Note also
that our ki and q are the k2i and q2, respectively, of [Hay90, §1.1].

It will useful to extend our definition of Uq(N) to allow for N to be any natural number. For
small values of N , we define Uq(N) as follows.

Definition 4.3. (a) We define Uq(so(0)) := k and Uq(0) := k[σ]/(σ2 − 1) to be the group
algebra of the group of order two, with Hopf algebra structure as in (4.14). We consider all
modules to be of type 1.

(b) We define Uq(so(1)) = Uq(1) := k[ξ]/(ξ2 − 1) to be the group algebra of the group of order
2, with Hopf algebra structure given by

∆(ξ) = ξ ⊗ ξ, ι(ξ) = ξ−1 = ξ, ϵ(ξ) = 1.

We consider all modules to be of type 1.
(c) We define Uq(so(2)) to be the associative algebra generated by k, k−1, subject to the relations

kk−1 = 1 = k−1k. The Hopf algebra structure is given by

(4.15) ∆(k) = k ⊗ k, ι(k±1) = k∓1, ϵ(k) = 1.

We define Uq(2) to be the associative algebra generated by k, k−1, σ, subject to the relations

kk−1 = 1 = k−1k, σ2 = 1, σk = k−1σ.
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The Hopf algebra structure is given by (4.14) and (4.15). A module is said to be type 1 if
the eigenvalues of the action of k lie in q

1
2
Z.

Throughout this paper, we assume Uq(so(N))-modules are type 1. Let Uq(so(N))-mod denote the
category of finite-dimensional Uq(so(N))-modules (of type 1) and let so(N)-mod denote the category
of finite dimensional so(N)-modules. Both these categories are semisimple, with irreducible objects
given by highest-weight representations with dominant integral highest weights. Furthermore, tensor
product multiplicities are the same in the two categories, as are dimensions of homomorphism spaces
between corresponding modules. We let Uq(N)-mod denote the categories of finite-dimensional
Uq(N)-modules that are of type 1; for N ≥ 3, this means that the modules are of type 1 when
restricted to Uq(so(N)).

Proposition 4.4. The category Uq(N)-mod is semisimple.

Proof. If N = 2n+1, then Uq(N) = Uq(so(N)), and so the result is well-known. Now suppose that
N = 2n and that M is a Uq(N)-submodule of M ′. Since Uq(so(N))-mod is semisimple, there exists
a Uq(so(N))-module splitting, that is, a Uq(so(N))-module homomorphism π : M ′ → M such that
π(v) = v for all v ∈M . Then 1

2(π + σπσ) : M ′ →M is a splitting of Uq(N)-modules. □

We let X denote the weight lattice of Uq(so(N)) and let X+ denote the positive weight lattice.
For N ≤ 2, this is defined as follows:

• When N ∈ {0, 1}, we define X = X+ = 0.
• When N = 2, we define X = X+ = 1

2Z and (λ, µ) = λµ.
For N ∈ {0, 1}, all vectors in all modules are considered to have weight zero. For N = 2, a vector
v has weight λ if kv = qλv.

For N ≥ 2, we let Lq(λ), λ ∈ X+, denote the simple Uq(so(N))-module of highest weight λ. For
N = 2, this is the one-dimensional module on which k acts by qλ.

4.2. Modules in type D. Throughout this subsection, we assume that N is even, so that Uq(N) =
Uq(so(N)) ⋊ k[σ]/(σ2 − 1). The category of finite-dimensional Spin(N)-modules is equivalent to
the category so(N)-mod, hence to the category Uq(so(N))-mod, as monoidal categories. Thus,
the category Uq(N)-mod is described via Clifford theory in a manner completely analogous to the
category of finite-dimensional Pin(N)-modules. We refer the reader to [MS24, §4.2], where the latter
category is described in detail, and state some of the corresponding facts for Uq(N)-modules that
will be used in the current paper.

For a Uq(so(N))-module W , let W σ denote the Uq(so(N))-module that is equal to W as a vector
space, but with the twisted action

a · w = (σaσ−1)w, a ∈ Uq(so(N)), w ∈W σ,

where the juxtaposition aw denotes the action of a ∈ Uq(so(N)) on w ∈W . We define an action of
the cyclic group ⟨σ : σ2 = 1⟩ on the weight lattice X by

(4.16) σϵi = (−1)δi1ϵi, 1 ≤ i ≤ n,

and extending by linearity. Then we have

Lq(λ)
σ ∼= L(σλ).

To pass between representations of Uq(so(N)) and Uq(N), we use the biadjoint pair of restriction
and induction functors

(4.17) Res: Uq(N)-mod → Uq(so(N))-mod and Ind: Uq(so(N))-mod → Uq(N)-mod.
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These satisfy

(4.18) Res ◦ Ind(W ) ∼=W ⊕W σ.

The simple Uq(N)-modules are:
• Ind(W ) ∼= Ind(W σ) for a simple Uq(so(N))-module W with W σ ̸∼=W ,
• the two simple summands of Ind(W ) for a simple Uq(so(N))-module W with W σ ∼=W .

We let triv0 denote the trivial Uq(N)-module and let triv1 be the one-dimensional module that
is trivial as a Uq(so(N))-module and satisfies σv = −v, v ∈ triv1. If W is a simple Uq(N)-module
with W σ ∼= W as Uq(so(N))-modules, and W ′ and W ′′ are its two lifts to a Uq(N)-module, then
these are related by

(4.19) W ′ ⊗ triv1 ∼=W ′′.

4.3. The natural module. We now describe the quantum analogue, V , of the natural module for
Uq(N). We first suppose that N ≥ 3. Then V is the finite-dimensional simple module with highest
weight ϵn. Let

(4.20) I =

{
{n, n− 1, . . . , 1,−1,−2, . . . ,−n} if N = 2n,

{n, n− 1, . . . , 1, 0,−1,−2, . . . ,−n} if N = 2n+ 1.

The module V has a basis {vi}i∈I, with weights

(4.21) wt(v0) = 0, wt(v±i) = ±ϵi, 1 ≤ i ≤ n,

in which the Uq(N)-action is given by

ei = Ei,i−1 − q−1E1−i,−i, fi = Ei−1,i − qE−i,1−i, 2 ≤ i ≤ n,(4.22)

e1 =

{
E2,−1 − q−1E1,−2 if N = 2n,

(q + 1)E1,0 − q−1E0,−1 if N = 2n+ 1,
(4.23)

f1 =

{
E−1,2 − qE−2,1 if N = 2n,

q−
1
2E0,1 − q

1
2 (q + 1)E−1,0 if N = 2n+ 1,

(4.24)

kiv = q(αi,wt(v))v, 1 ≤ i ≤ n, v ∈ V,(4.25)

σvi =

{
−vi if i /∈ {±1},
−v−i if i ∈ {±1},

(4.26)

where Ei,j is the matrix with a 1 in the (i, j)-position and 0 in all other positions, and we adopt
the convention that Ei,j = 0 if i or j does not lie in I. Above, and in what follows, we also adopt
the convention that expressions involving σ only apply in type Dn (N = 2n). The module V is a
simple, self-dual module with highest weight vector vn.

When N ≤ 2, the natural module is given as follows (see [MS24, Rem. 4.1]):
• When N = 0, we have V = 0.
• When N = 1, V is the one-dimensional module for Uq(N) = k[ξ]/(ξ2 − 1) given by ξ acting

as 1. We fix a nonzero vector v0 ∈ V .
• When N = 2, the module V is 2-dimensional, with basis v1, v−1, and action given by

kv±1 = q±1v±1, σv±1 = −v∓1.

When N ≥ 3, let ρ denote half the sum of the positive roots (4.4), so that

(4.27) ρ =

{∑n
i=1(i− 1)ϵi when N = 2n (type Dn),∑n
i=1

(
i− 1

2

)
ϵi when N = 2n+ 1 (type Bn).
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Define

(4.28) ρ0 = 0, ρi = (ρ, ϵi), ρ−i = −(ρ, ϵi), 1 ≤ i ≤ n.

Thus,

ρi = i− 1, ρ−i = 1− i, 1 ≤ i ≤ n, when N = 2n,(4.29)

ρ0 = 0, ρi = i− 1
2 , ρ−i =

1
2 − i, 1 ≤ i ≤ n, when N = 2n+ 1.(4.30)

When N ∈ {1, 2}, we take (4.29) and (4.30) as definitions.

Lemma 4.5. For N ≥ 1, the bilinear map

(4.31) ΦV : V ⊗ V → triv, ΦV (vi ⊗ vj) = δi,−jq
−2δj>0ρj (q + 1)δj,0 , i, j ∈ I,

is a homomorphism of Uq(N)-modules.

Proof. Since V is simple and self-dual, there is a unique Uq(N)-module homomorphism V⊗V → triv,
up to scalar multiple. It follows from (4.21) that ΦV (vi ⊗ vj) is zero unless i = −j.

First consider the case N = 2n. We normalize ΦV so that ΦV (v1 ⊗ v−1) = 1. For 2 ≤ i ≤ n, we
compute

ΦV (vi, v−i)
(4.22)
= ΦV (eivi−1, v−i)

(4.12)
= −ΦV (vi−1, eik

−1
i v−i)

(4.2),(4.3)
=

(4.21),(4.25)
−qΦV (vi−1, eiv−i)

(4.22)
= ΦV (vi−1, v1−i).

Thus, (4.31) holds for 1 ≤ i ≤ n by induction. Next, we compute

ΦV (v−1 ⊗ v1)
(4.24)
= ΦV (f1v2, v1)

(4.12)
= ΦV (v2,−k1f1v1)

(4.24)
= qΦV (v2, k1v−2)

(4.2),(4.3)
=

(4.21),(4.25)
ΦV (v2, v−2) = 1.

Then, since, for 2 ≤ i ≤ n,

ΦV (v−i, vi)
(4.22)
= −q−1ΦV (fiv1−i, vi)

(4.12)
= q−1ΦV (v1−i, kifivi)

(4.22)
= q−1ΦV (v1−i, kivi−1)

(4.2),(4.3)
=

(4.21),(4.25)
q−2ΦV (v1−i, vi−1),

we see that (4.31) also holds for −n ≤ i ≤ −1 by induction.
Now suppose N = 2n+ 1. This time we normalize the form so that ΦV (v0 ⊗ v0) = q + 1. Then

we have

ΦV (v1, v−1)
(4.23)
= (q + 1)−1ΦV (e1v0, v−1)

(4.12)
= −(q + 1)−1ΦV (v0, e1k

−1
1 v−1)

(4.2),(4.3)
=

(4.21),(4.25)
−q(q + 1)−1ΦV (v0, e1v−1)

(4.23)
= (q + 1)−1ΦV (v0, v0) = 1

and

ΦV (v−1, v1)
(4.24)
= −q−

1
2 (q + 1)−1ΦV (f1v0, v1)

(4.12)
= q−

1
2 (q + 1)−1ΦV (v0, k1f1v1)

(4.24)
= q−1(q + 1)−1ΦV (v0, k1v0)

(4.2),(4.3)
=

(4.21),(4.25)
q−1(q + 1)−1ΦV (v0, v0) = q−1 (4.30)

= q−2ρ1 .

Then the result follows by induction as in the N = 2n case. □



THE QUANTUM SPIN BRAUER CATEGORY 21

4.4. The braiding. We recall some well-known facts about the braiding on the category of finite-
dimensional Uq(so(N))-modules. First suppose that N ≥ 3. Let TW,W ′ : W ⊗W ′ →W ′⊗W denote
the component of the braiding on modules W and W ′. We can choose the braiding so that there
exist Θν ∈ Uq(so(N))ν ⊗k Uq(so(N))−ν , for ν in the positive root lattice of g, such that Θ0 = 1⊗ 1
and, for two diagonalizable highest-weight modules W and W ′ of Uq(g),

(4.32) TW,W ′ = flip ◦DW,W ′ ◦

(
1 +

∑
ν

ϱ(Θν)

)
: W ⊗W ′ →W ′ ⊗W,

where
• flip is the tensor flip given by w ⊗ w′ 7→ w′ ⊗ w,
• DW,W ′ acts as multiplication by q(λ,µ) on Wλ ⊗W ′

µ, where Mλ denotes the λ-weight space
of a module M , and

• ϱ(Θν) := (ϱW ⊗ ϱW ′)(Θν), where ϱM : Uq(so(N)) → Endk(M) is the representation associ-
ated to the module M .

See, for example, [DF94, (2.3.3)]. Note that, since W and W ′ are finite dimensional, the sum∑
ν ρ(Θν) is finite.
Recall, from Section 4.1, our definition of weights for N ≤ 2. We define

(4.33) TW,W ′ := flipW,W ′ DW,W ′ for N ∈ {0, 1, 2}.
In particular, this means that TW,W ′ = flipW,W ′ for N ∈ {0, 1}.

While it is well known that TW,W ′ is a isomorphism of Uq(so(N))-modules, we need the following
stronger statement.

Proposition 4.6. For W,W ′ ∈ Uq(N)-mod, the map TW,W ′ is an isomorphism of Uq(N)-modules.

Proof. Since Uq(N) = Uq(so(N)) if N = 2n+ 1, we suppose that N = 2n (i.e., we are in type Dn).
By (4.14), it suffices to show that (σ ⊗ σ)TW,W ′(σ ⊗ σ) = TW,W ′ . For N ∈ {0, 1, 2}, this follows
immediately from (4.33).

Now supposeN ≥ 3. Since the category Uq(N)-mod is semisimple by Proposition 4.4, it is enough
to consider the case where W = Lq(λ) and W ′ = Lq(λ

′) for λ, λ′ ∈ X+. By [KS97, Prop. 8.22]
(which is an algebraic version of Lemma 2.6), TW ′,WTW,W ′ acts on any simple submodule of W ⊗W ′

of highest weight µ as scalar multiplication by q−(λ,λ+2ρ)−(λ′,λ′+2ρ)+(µ,µ+2ρ). It follows from (4.16)
and (4.27) that

(σµ, σµ+ 2ρ) = (µ, µ+ 2ρ) for all µ ∈ X.

Thus

(4.34) TW ′,WTW,W ′ = (σ ⊗ σ)TW ′,WTW,W ′(σ ⊗ σ).

Let Θ = 1 +
∑

ν Θν and Θσ = (σ ⊗ σ)(Θ)where σ acts on Uq(so(N)) via the diagram automor-
phism σ. Then we have

(4.35) TW ′,WTW,W ′
(4.32)
= DW,W ′ flip(ϱ(Θ))DW,W ′ϱ(Θ)

and

(4.36) (σ ⊗ σ)TW ′,WTW,W ′(σ ⊗ σ)
(4.32)
= DW,W ′ flip

(
ϱ(Θσ)

)
DW,W ′ϱ(Θσ),

By (4.34) to (4.36), we have

(4.37) flip(ϱ(Θ))DW,W ′ϱ(Θ) = flip
(
ϱ(Θσ)

)
DW,W ′ϱ(Θσ).

It follows from (4.37) and [DF94, Prop. 2.3.3] that ϱ(Θ) = ϱ(Θσ). Since no proof is given
in [DF94, Prop. 2.3.3], we include the details. Let < denote the usual ordering on X, given by
µ < ν ⇐⇒ ν − µ ∈ X+. Then define an ordering ≺ on X ×X by (µ, ν) ≺ (µ′, ν ′) if
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• µ > µ′, or
• µ = µ′ and ν < ν ′.

Then, with respect to ≺ and the weight decomposition of the modules W and W ′, the matrices
ϱ(Θ) and ϱ(Θσ) are both upper unitriangular, while flip(ϱ(Θ)) and flip(ϱ(Θσ)) are both lower
unitriangular. It then follows from (4.37) and the uniqueness of LDU factorization of matrices that
ϱ(Θ) = ϱ(Θσ). Thus,

(σ ⊗ σ)TW,W ′(σ ⊗ σ)
(4.32)
= flip ◦DW,W ′ ◦ ϱ(Θσ) = flip ◦DW,W ′ ◦ ϱ(Θ)

(4.32)
= TW,W ′ ,

as desired. □

The following lemma, which follows immediately from (4.32) and (4.33), will be useful in our
computations to come.

Lemma 4.7. Suppose W and W ′ are diagonalizable highest-weight modules, that w is a highest-
weight vectors of W of weight λ, and that w′ is a lowest weight vector of W ′ of weight λ′. Then

(4.38) TW,W ′(w ⊗ w′) = q(λ,λ
′)w′ ⊗ w.

The only explicit braiding we will need in the current paper is TV,V , where V is the natural
module defined in Section 4.3. This explicit expression is well known; see, for example, [CP95, §7.3
(20)], [KS97, §8.4.2 (61)], or [DF94, Prop. 5.1.2]). In our chosen basis {vi}i∈I, we have

(4.39) T := TV,V = q
∑
i∈I
i ̸=0

Eii ⊗ Eii + δN,2n+1E0,0 ⊗ E0,0 +
∑
i,j∈I
i ̸=±j

Eji ⊗ Eij + q−1
∑
i∈I
i ̸=0

E−i,i ⊗ Ei,−i

+ (q − q−1)
∑
i,j∈I
i<j

Eii ⊗ Ejj − (q − q−1)(q + 1)δi,0−δj,0
∑
i,j∈I
i<j

E−j,i ⊗ Ej,−i,

where, as usual, the terms with indices 0 only appear in the case N = 2n+ 1.

4.5. Tensor product decompositions. We now note some tensor product decompositions that
will be important for us. As noted at the end of Section 4.1, these are the same as the corresponding
tensor product decompositions in the non-quantum case. We will therefore state the results without
proof, referring the reader to [MS24, §4.4], which handles the non-quantum case. Note, however,
that the labelling of the Dynkin diagrams is different in [MS24]; node i in [MS24] corresponds to
node n− i+ 1 in the current paper.

Lemma 4.8. For N ≥ 1, we have dimHomUq(N)(S ⊗ V, S) = 1.

Proof. When N = 1, this follows from the fact that V is the trivial module and S is simple. For
N ≥ 2, it follows from [MS24, Cor. 4.11]. □

Proposition 4.9. Let n ∈ N. By convention, let Lq(ϵn + ϵn−1 + · · ·+ ϵk) be the trivial Uq(so(N))-
module Lq(0) when k = n+ 1.

(a) When N = 2n+ 1 (type Bn), we have

(4.40) S⊗2 ∼=
n+1⊕
k=1

Lq(ϵn + ϵn−1 + · · ·+ ϵk) as Uq(N)-modules.

(b) When N = 2n (type Dn), we have

(4.41) S⊗2 ∼=
n+1⊕
k=1

Ind(Lq(ϵn + ϵn−1 + · · ·+ ϵk)) as Uq(N)-modules.
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In (4.40), all summands on the right-hand side are irreducible. For (4.41), it follows from the
discussion in Section 4.2 that the k = 1 summand is irreducible, while the k ̸= 1 summands are
direct sums of two irreducible Uq(N)-modules.

4.6. Quantum dimension formulae. We now give some evaluations of the quantum dimension
formula. While standard, we include the proofs for completeness. Recall the definition of ρ from
(4.27). The quantum dimension of a Uq(so(N))-module M is

dimqM =
∑
ν∈X

q⟨2ρ,ν⟩ dimMν .

Lemma 4.10. We have
dimq V = [N − 1] + 1.

Proof. In type Dn, the weights of V are {±ϵi : 1 ≤ i ≤ n}, each with multiplicity one. Thus, we
have

dimq V =

n∑
i=1

q2i−2 +

n∑
i=1

q2−2i = 1 + qN−2 + qN−4 + · · ·+ q2−N ) = 1 + [N − 1].

In type Bn the weights of V are {±ϵi : 1 ≤ i ≤ n} ∪ {0}, each with multiplicity one. So, we have

dimq V =

n∑
i=1

q2i−1 +

n∑
i=1

q1−2i + 1 = qN−2 + qN−4 + · · ·+ q2−N + 1 = 1 + [N − 1]. □

Lemma 4.11. If N ≥ 3, then

(4.42) dimq Lq(ϵn + · · ·+ ϵk) =

[
N − 1

n− k + 1

]
+

[
N − 1
n− k

]
, 1 ≤ k ≤ n.

Proof. Under the equivalence of categories between Uq(so(2n))-mod and so(2n)-mod, the module
Lq(ϵn + · · · + ϵk) corresponds to the exterior power Λn−k+1(V ). (See, for example, [MS24, (4.31),
(4.33)], noting our different convention for labelling the simple roots.) Recall from (4.21) that the
weights of V are ϵi, i ∈ I, where we adopt the convention that ϵ−i = −ϵi for 1 ≤ i ≤ n. Thus, the
weights of Λn−k+1V , counted according to multiplicity, are∑

i∈I
ϵi, I ⊆ I, |I| = n− k + 1.

Therefore
dimq Lq(ϵn + · · ·+ ϵk) =

∑
I⊆I

|I|=n−k+1

∏
i∈I

q2ρi .

By (4.29) and (4.30), the values 2ρi, i ∈ I, are

0, N − 2, N − 4, . . . , 2−N.

(Note that the value 0 occurs twice when N is even.) Thus, letting A = {N − 2, N − 4, . . . , 2−N},
we have

dimq Lq(ϵn + · · ·+ ϵk) =
∑
J⊆A

|J |=n−k+1

∏
j∈J

qj +
∑
J⊆A

|J |=n−k

∏
j∈J

qj .

For l ∈ N, equating the coefficients of xl in (4.5), we have∑
J⊆A
|J |=l

∏
j∈J

qj =

[
N − 1
l

]

and the result follows. □
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5. The quantum Clifford algebra

Our goal in this section is to introduce the quantum analogue of the spin module for the or-
thogonal groups. This module is constructed using a quantum analogue of the Clifford algebra.
Throughout this section, we continue to assume that k = C

(
q±

1
4

)
.

5.1. Definition of the quantum Clifford algebra. We now introduce the quantum Clifford
algebra, following the approach of [DF94].

Definition 5.1 ([DF94, Defs. 3.1.1, 3.2.1]). The quantum Clifford algebra Clq = Clq(N) is the
quotient of the tensor algebra of V by the relations

(5.1) (id+qT )(u⊗ v) = ΦV (u, v), u, v ∈ V,

where T is as in (4.39). For i ∈ I, we let ψi denote the image of vi in Clq(N). We also define

(5.2) ψ†
i = ψ−i, 0 ≤ i ≤ n.

It follows from (4.31) that, for 0 ≤ i, j ≤ n,

(5.3)
ΦV (vi, v−j) = δij(q + 1)δi,0 , ΦV (v−i, vj) = δijq

−2ρi(q + 1)δi,0 ,

ΦV (vi, vj) = 0 = ΦV (v−i, v−j).

The following corollary is closely related to [DF94, Prop. 5.2.3]. However, since no proof is given
in [DF94], and our conventions (in particular, our chosen basis of V ) are different, we provide a
proof. Recall our convention that expressions involving the index 0 only apply when N = 2n+ 1.

Proposition 5.2. The quantum Clifford algebra Clq(N) is isomorphic to the associative algebra
with generators ψi, ψ

†
i , 1 ≤ i ≤ n, subject to the relations

ψiψj = −qψjψi, 0 ≤ j < i ≤ n,(5.4)

ψ†
iψ

†
j = −q−1ψ†

jψ
†
i , 0 ≤ j < i ≤ n,(5.5)

ψiψi = 0 = ψ†
iψ

†
i , 1 ≤ i ≤ n,(5.6)

ψiψ
†
j = −qψ†

jψi, 0 ≤ i, j ≤ n, i ̸= j,(5.7)

ψiψ
†
i + ψ†

iψi = (q2 − 1)
∑
j>i

ψ†
jψj + 1, 1 ≤ i ≤ n,(5.8)

ψ2
0 = (q2 − 1)

n∑
j=1

ψ†
jψj + 1.(5.9)

Proof. For i, j ∈ I, j < i, j ̸= −i, we have

T (ψi ⊗ ψj)
(4.39)
= ψj ⊗ ψi.

Hence, (4.31) and (5.1) gives
ψiψj + qψjψi = 0,

proving (5.4). Using (5.2), it also proves (5.5) and (5.7).
Next, for i ∈ I, i ̸= 0, we have

R(ψi ⊗ ψi)
(4.39)
= qψi ⊗ ψi,

and so (4.31) and (5.1) give
(1 + q2)ψiψi = 0 =⇒ ψiψi = 0,

proving (5.6).
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Finally, suppose 0 ≤ i ≤ n. Then we have

R(vi ⊗ v−i)
(4.39)
= q−δi ̸=0v−i ⊗ vi − (q − q−1)(q + 1)δi,0

∑
j>i

v−j ⊗ vj .

Hence, (5.1) and (5.3) give

ψiψ
†
i + qδi,0ψ†

iψi = (q2 − 1)(q + 1)δi,0
∑
j>i

ψ†
jψj + (q + 1)δi,0 ,

proving (5.8) and (5.9). □

Recall that the classical Clifford algebra Cl(2n) is the associative k-algebra with generators
Ψi,Ψ−i = Ψ†

i , 1 ≤ i ≤ n, subject to the relations

(5.10) ΨiΨj +ΨjΨi = 0 = Ψ†
iΨ

†
j +Ψ†

jΨ
†
i , ΨiΨ

†
j +Ψ†

jΨi = δij , 1 ≤ i, j ≤ n.

The classical Clifford algebra Cl(2n+1) is the associative k-algebra with generators Ψi,Ψ
†
i , 0 ≤ i ≤

n, subject to the relations (5.10) and

(5.11) Ψ0 = Ψ†
0, Ψ0Ψi +ΨiΨ0 = 0 = Ψ0Ψ

†
i +Ψ†

iΨ0, Ψ2
0 = 1, 1 ≤ i ≤ n.

Define

(5.12) ωi := ΨiΨ
†
i + q−1Ψ†

iΨi, 1 ≤ i ≤ n.

These elements are invertible and, for 1 ≤ i, j ≤ n, we have

ωiΨi = Ψi, Ψiωi = q−1Ψi, Ψ†
iωi = Ψ†

i , ωiΨ
†
i = q−1Ψ†

i , ωiωj = ωjωi,(5.13)

ωjΨiω
−1
j = qδijΨi, ωjΨ

†
iω

−1
i = q−δijΨ†

i ,(5.14)

ωk
i = ΨiΨ

†
i + q−kΨ†

iΨi = 1 + (q−k − 1)Ψ†
iΨi, k ∈ Z.(5.15)

For 0 ≤ i ≤ n, define

(5.16) ω>i :=
∏
j>i

ωj , ω≥i :=
∏
j≥i

ωj , so that ω−1
>i =

∏
j>i

ω−1
j , ω−1

≥i =
∏
j≥i

ω−1
j .

Proposition 5.3. There is an isomorphism of k-algebras Clq(N)
∼=−→ Cl(N) given by

(5.17) ψi 7→ qρiω−1
>iΨi, ψ†

i 7→ q−ρiω−1
>iΨ

†
i , 0 ≤ i ≤ n.

Proof. Let θ be the given map. We must verify that θ respects the relations of Proposition 5.2. For
0 ≤ j < i ≤ n,

θ(ψi)θ(ψj) = qρi+ρjω−1
>iΨiω

−1
>jΨj

(5.10)
=

(5.14)
−qρi+ρj+1ω−1

>jΨjω
−1
>iΨi = −qθ(ψj)θ(ψi)

and

θ(ψ†
i )θ(ψ

†
j) = q−ρi−ρjω−1

>iΨ
†
iω

−1
>jΨ

†
j

(5.10)
=

(5.14)
−q−ρi−ρj−1ω−1

>jΨ
†
jω

−1
>iΨ

†
i = −q−1θ(ψ†

j)θ(ψ
†
i ).

It is straightforward to verify that θ(ψi)θ(ψi) = 0 = θ(ψ†
i )θ(ψ

†
i ) for all 1 ≤ i ≤ n.

For 0 ≤ i, j ≤ n, i ̸= j, we have

θ(ψi)θ(ψ
†
j) = qρi−ρjω−1

>iΨiω
−1
>jΨ

†
j

(5.10)
=

(5.14)
−qρi−ρj+1ω−1

>jΨ
†
jω

−1
>iΨi = −qθ(ψ†

j)θ(ψi).

Next, for 1 ≤ i ≤ n, we have

θ(ψi)θ(ψ
†
i ) = ω−1

>iΨiω
−1
>iΨ

†
i

(5.14)
= ω−2

>iΨiΨ
†
i

(5.10)
= ω−2

>i (1−Ψ†
iΨi)
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(5.14)
= −ω−1

>iΨ
†
iω

−1
>iΨi + ω−2

>i = −θ(ψ†
i )θ(ψi) + ω−2

>i .

Thus,

θ(ψi)θ(ψ
†
i ) + θ(ψ†

i )θ(ψi) = ω−2
>i

(5.15)
=
(
1 + (q2 − 1)Ψ†

i+1Ψi+1

)
ω−2
>i+1

= (q2 − 1)θ(ψ†
i+1)θ(ψi+1) + ω−2

>i+1

= (q2 − 1)
(
θ(ψ†

i+1)θ(ψi+1) + θ(ψ†
i+2)θ(ψi+2)

)
+ ω−2

>i+2

...

= (q2 − 1)
∑
j>i

θ(ψ†
j)θ(ψj) + 1.

A similar argument shows that

θ(ψ0)
2 = ω−2

>0 = (q2 − 1)
n∑

j=1

θ(ψ†
j)θ(ψj) + 1. □

Proposition 5.3 is closely related to [DF94, Prop. 5.3.1]. The difference is the factors of q±ρi

in (5.17), which do not appear in [DF94]. We include these factors since they are needed for
Proposition 5.6. From now on, we will use Proposition 5.3 to identify Clq(N) and Cl(N).

Remark 5.4. Quantum Clifford algebras have appeared in different places in the literature. We
have followed the approach of [DF94] in our definition of Clq(2n). Propositions 5.2 and 5.3, which
are motivated by [DF94, §5.3], provide the link to the alternate approach of [Hay90, §2.1]. Precisely,
Clq(2n) is isomorphic to the quotient of the algebra A+

q (n) of [Hay90, §2.1] by any of the following
sets of relations (where we denote the generators ψi and ψ†

i of [Hay90] by Ψi and Ψ†
i , respectively):

• ΨiΨ
†
i +Ψ†

iΨi = 1 for all 1 ≤ i ≤ n,
• ωiΨi = Ψi for all 1 ≤ i ≤ n,
• Ψ†

iωi = Ψ†
i for all 1 ≤ i ≤ n.

These extra relations also appear in [BER24, Def. B.1]; see [BER24, Rem. B.2].

5.2. The spin module for the quantum Clifford algebra. Suppose n ≥ 1, and let

S := Λ(W ) =
n⊕

r=0

Λr(W ), where W = spank{Ψ
†
i : 1 ≤ i ≤ n}.

As a k-module, S has basis

(5.18)
xI := Ψ†

i1
∧Ψ†

i2
∧ · · · ∧Ψ†

ik
,

I = {i1, . . . , ik} ⊆ {1, 2, . . . , n}, i1 > i2 > . . . > ik, 0 ≤ k ≤ n.

In particular,

(5.19) dimk(S) = 2n.

The classical Clifford algebra Cl(2n) acts naturally on S via wedging and contracting operators.
(The precise action is given by taking q = 1 and replacing ψ by Ψ in (5.21) and (5.22) below.)
Using (5.12), we see that

(5.20) ωixI =

{
q−1xI if i ∈ I,

xI if i /∈ I.
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Via the isomorphism of Proposition 5.3, S has the structure of a Clq(2n)-module by defining, for
I ⊆ {1, 2, . . . , n}, 1 ≤ i ≤ n,

ψ†
ixI =

{
0 if i ∈ I,

q−ρi(−q)|{j∈I:j>i}|xI∪{i} if i /∈ I,
(5.21)

ψixI =

{
qρi(−q)|{j∈I:j>i}|xI\{i} if i ∈ I,

0 if i /∈ I.
(5.22)

We can define two Clq(2n + 1)-module structures on S, depending on a choice of ε ∈ {±1}. We
again use the action defined in (5.21) and (5.22), and additionally define

(5.23) Ψ0xI = ε(−1)|I|xI , so that ψ0xI = ε(−q)|I|xI .
In both cases, N = 2n or N = 2n+ 1, we call S the spin module for Clq(N).

5.3. The spin module for Uq(N). We now introduce the quantum analogue of the spin module
for the quantized enveloping algebra, which is one of the fundamental ingredients in our main result.

Proposition 5.5. (a) If N = 2n ≥ 4, then there is a k-algebra homomorphism Uq(2n) →
Clq(2n) given by

ei 7→ ΨiΨ
†
i−1, fi 7→ Ψi−1Ψ

†
i , ki 7→ ωiω

−1
i−1, 2 ≤ i ≤ n,

e1 7→ Ψ2Ψ1, f1 7→ Ψ†
1Ψ

†
2, k1 7→ qω2ω1, σ 7→

√
−1
(
Ψ1 −Ψ†

1

)
.

(b) If N = 2n + 1 ≥ 3, then there is a C(q)-algebra homomorphism Uq(2n + 1) → Clq(2n + 1)
given by

ei 7→ ΨiΨ
†
i−1, fi 7→ Ψi−1Ψ

†
i , 1 ≤ i ≤ n,

k1 7→ q
1
2ω1, ki 7→ ωiω

−1
i−1, 2 ≤ i ≤ n.

Proof. This is proved in [Hay90, Th. 3.2], except that the labelling of the Dynkin diagram is different
there, the element σ is not included in the definition of the quantized enveloping algebra there, and
[Hay90, Th. 3.2] does not have the factors of Ψ0 = Ψ†

0 that appear in the images of e1 and f1 above
when N = 2n+ 1. The relations (4.10) are straightforward to verify. For example,

−(Ψ1 −Ψ†
1)(Ψ2Ψ1)(Ψ1 −Ψ†

1) = −Ψ†
1Ψ2Ψ1Ψ

†
1 = Ψ2Ψ

†
1(1−Ψ†

1Ψ1) = Ψ2Ψ
†
1,

showing that the second relation in (4.10) with i = 1 is satisfied. We also have

− (Ψ1 −Ψ†
1)(qω2ω1)(Ψ1 −Ψ†

1) = q(Ψ†
1 −Ψ1)(Ψ2Ψ

†
2 + q−1Ψ†

2Ψ2)(Ψ1Ψ
†
1 + q−1Ψ†

1Ψ1)(Ψ1 −Ψ†
1)

= q(Ψ†
1 −Ψ1)(Ψ2Ψ

†
2 + q−1Ψ†

2Ψ2)(Ψ1 − q−1Ψ†
1) = q(Ψ2Ψ

†
2 + q−1Ψ†

2Ψ2)(Ψ
†
1 −Ψ1)(Ψ1 − q−1Ψ†

1)

= (Ψ2Ψ
†
2 + q−1Ψ†

2Ψ2)(Ψ1Ψ
†
1 + qΨ†

1Ψ1) = ω2ω
−1
1 ,

showing that the last relation in (4.10) for the positive exponent is satisfied. Verification of the
remaining relations in (4.10) is similar. □

Proposition 5.5 allows us to view the spin module S as a module for Uq(N). We continue to refer
to this Uq(N)-module as the spin module. It is straightforward to see that S is a self-dual simple
module. For S to be simple, the inclusion of the element σ in the definition of Uq(2n+1) is crucial.
When N = 2n+ 1, S has highest-weight vector x∅ of weight 1

2(ϵ1 + ϵ2 + · · ·+ ϵn). When N = 2n,
we have S ∼= Ind(Lq(±ϵ1 + ϵ2 + · · ·+ ϵn)).

When N ≤ 2, the spin module is given as follows (see [MS24, Rem. 4.1]):
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• When N = 0, then S is the one-dimensional module for Uq(0) = k[σ]/(σ2 − 1) where σ acts
by −1. We fix a nonzero element x∅ ∈ S.

• When N = 1, then S is the one-dimensional module for Uq(1) = k[ξ]/(ξ2 − 1) where ξ acts
by −1. We fix a nonzero element x∅ ∈ S.

• When N = 2, the module S is 2-dimensional, with basis x∅, x{1}, and action given by

kx∅ = q
1
2x∅, kx{1} = q−

1
2x{1}, σx∅ = −

√
−1x{1}, σx{1} =

√
−1x∅.

5.4. Quantum Clifford multiplication. The inclusion V ↪→ Cl(N), together with the action of
Cl(N) on S given by (5.21) to (5.23) yields a map

(5.24) τ : V ⊗ S → S, vi ⊗ x 7→ ψix, i ∈ I.

We refer to τ as quantum Clifford multiplication.

Proposition 5.6. The map τ is a homomorphism of Uq(N)-modules.

The proof of Proposition 5.6, which is a lengthy but straightforward direct computation, is given
in Appendix A.

5.5. Invariant bilinear form. For a subset I of {1, 2, . . . , n}, we let I∁ = {1, 2, . . . , n} \ I denote
its complement. Define a bilinear form on S by

(5.25) ΦS(xI , xJ) = δI,J∁(−1)n(N+1)|I|
∏
i∈I

(−1)iq−ρi ,

and extending by bilinearity. When N = 2n + 1, this is the form from [BER24, Example 4.16],
except that their q is our q

1
2 and we label the Dynkin diagram differently, so one needs to replace i

by n+ 1− i.

Lemma 5.7. For 0 ≤ i ≤ n, x, y ∈ S, we have

(5.26) ΦS(Ψ
†
ix, y) = (−1)Nnq−ρiΦS(x,Ψ

†
iy), ΦS(Ψix, y) = (−1)NnqρiΦS(x,Ψiy).

Proof. It suffices to consider the case where x = xI , y = xJ , i /∈ I, J = I∁ \ {i}. In this case, for
1 ≤ i ≤ n, we have

ΦS(Ψ
†
ixI , xJ) = (−1)|{j∈I:j>i}|ΦS(xI∪{i}, xJ) = (−1)|{j∈I:j>i}|+n(N+1)(|I|+1)

∏
j∈I∪{i}

(−1)jq−ρj

and
ΦS(xI ,Ψ

†
ixJ) = (−1)|{j /∈I:j>i}|ΦS(xI , xI∁) = (−1)|{j /∈I:j>i}|+n(N+1)|I|

∏
j∈I

(−1)jq−ρj .

The first equality in (5.26) now follows from the fact that

|{j ∈ I : j > i}|+ |{j /∈ I : j > i}| = n− i.

The proof of the second equality is similar. The proof of both equalities in (5.26) for i = 0 are
straightforward. □

Remark 5.8. It follows from Lemma 5.7 and [MS24, Lem. 4.6], together with the fact that
ΦS(x∅, x∅∁) = 1, that setting q = 1 in (5.25) recovers the bilinear form [MS24, (4.16)].

Corollary 5.9. The bilinear form ΦS induces a homomorphism S ⊗ S → triv of Uq(N)-modules.
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Proof. For N ≤ 2, this is a straightforward direct verification. Thus, we suppose N ≥ 3. It suffices
to show that

ΦS(ax, y) = ΦS(x, ι(a)y) for all x, y ∈ S, a ∈ {ei, fi, k±1
i , σ : i ∈ I}.

For 2 ≤ i ≤ n, we have

ΦS(eix, y) = ΦS(ΨiΨ
†
i−1x, y)

(5.26)
= qρi−ρi−1ΦS(x,Ψ

†
i−1Ψiy)

(4.29)
=

(4.30)
−qΦS(x,ΨiΨ

†
i−1y).

Now, since ΨiΨ
†
i−1xI = 0 unless i ∈ I and i− 1 /∈ I, we have

qΨiΨ
†
i−1y = ΨiΨ

†
i−1ω

−1
i ωi−1y = eik

−1
i y,

as desired. The proofs that ΦS(fix, y) = −ΦS(x, kifiy) and ΦS(k
±1
i x, y) = ΦS(x, k

∓1
i y) are similar.

Now suppose that N = 2n. Then

ΦS(e1x, y) = ΦS(Ψ2Ψ1x, y)
(5.26)
= qρ1+ρ2ΦS(x,Ψ1Ψ2y)

(4.29)
= −qΦS(x,Ψ2Ψ1y).

Since Ψ2Ψ1xI = 0 unless 1, 2 ∈ I, we have

qΨ2Ψ1y = q−1Ψ2Ψ1ω
−1
2 ω−1

1 y = e1k
−1
1 y,

as desired. The proof that ΦS(f1x, y) = −ΦS(x, k1f1y) is similar. We also have

ΦS(σx, y) =
√
−1ΦS(Ψ1x, y)−

√
−1ΦS(Ψ

†
1x, y)

(5.26)
=

(4.29)

√
−1ΦS(x,Ψ1y)−

√
−1ΦS(x,Ψ

†
1y) = ΦS(x, σy).

Now suppose that N = 2n+ 1. Then, for I, J ⊆ {1, 2, . . . , n}, we have

ΦS(e1xI , xJ) = ΦS(Ψ1Ψ0xI , xJ)
(5.26)
= qρ0+ρ1ΦS(xI ,Ψ0Ψ1xJ)

(4.30)
= −q

1
2ΦS(xI ,Ψ1Ψ0xJ).

It suffices to consider the case 1 ∈ I, J = I∁ ∪ {1}, since otherwise all the above expressions are
equal to zero. In this case, we have

q
1
2Ψ1Ψ0xJ = q−

1
2Ψ1Ψ0ω

−1
1 xJ = e1k

−1
1 xJ ,

as desired. □

6. The incarnation functor

In this section, we relate the quantum spin Brauer category to the representation theory of Uq(N)
by defining a functor from QSB to Uq(N)-mod. In Sections 7 and 8, we will show that this functor
is full and essentially surjective.

Throughout this section, we assume k = C
(
q±

1
4

)
. Let

(6.1) σN = (−1)(
n
2)+nN .

We fix the parameters

(6.2) t = qN(1−N)/8, κ = (−1)nNq(1−N)/2, dS = σN

n∏
i=1

(
q

N
2
−i + qi−

N
2

)
,

and set

(6.3) QSB(N) := QSB(q, t, κ, dS).

By (2.9), we have

(6.4) dV =
κ−2 − κ2

q − q−1
+ 1 = [N − 1] + 1.



30 PETER J. MCNAMARA AND ALISTAIR SAVAGE

Fix a basis BS of S, and let B∨
S = {x∨ : x ∈ BS} denote the left dual basis with respect to ΦS ,

from (5.25), defined by
ΦS(x

∨, y) = δx,y, x, y ∈ BS .

We fix a basis BV of V and define the left dual basis B∨
V = {v∨ : v ∈ V } similarly, using ΦV from

(4.31). Then we have G(V )-module homomorphisms

Φ∨
S : k → S ⊗ S, λ 7→ λ

∑
x∈BS

x⊗ x∨, λ ∈ k,(6.5)

Φ∨
V : k → V ⊗ V, λ 7→ λ

∑
v∈BV

v ⊗ v∨, λ ∈ k.(6.6)

These are independent of the choices of bases.
It follows from (5.25) that the left dual to the basis xI , I ⊆ {1, 2, . . . , n}, of S is given by

(6.7) x∨I = (−1)n(N+1)|I∁|
∏
i/∈I

(−1)iqρixI∁ ,

and hence

(6.8) (x∨I )
∨ = σN

(∏
i∈I

qρi

)(∏
i/∈I

q−ρi

)
xI .

Similarly, it follows from (4.31) that the left dual to the basis vi, i ∈ I, of V is given by

(6.9) v∨i = q2δi>0ρi(q + 1)−δi,0v−i,

and hence

(6.10) (v∨i )
∨ = q−2ρivi.

Recall the map τ : V ⊗ S → S from (5.24).

Theorem 6.1. There is a unique k-linear monoidal functor

F : QSB(N) → Uq(N)-mod

given on objects by S 7→ S, V 7→ V , and on morphisms by

7→ ΦS , 7→ (q2−N + 1)−1ΦV , 7→ τ,(6.11)

7→ σNTS,S , 7→ TS,V , 7→ TV,S , 7→ TV,V .(6.12)

Furthermore, we have

7→ σNT
−1
S,S , 7→ T−1

V,S , 7→ T−1
S,V , 7→ T−1

V,V ,(6.13)

7→ Φ∨
S , 7→ (q2−N + 1)Φ∨

V .(6.14)

We call F the incarnation functor.

Proof. We first show that (6.11) to (6.14) indeed yield a functor F. We must show that F respects
the relations of Definition 2.1. When N = 0, all diagrams involving a blue strand are zero and the
verification is straightforward. Thus, we assume N ≥ 1.

It is well known that the TS,S , TS,V , TV,S , and TV,V yield a braiding on the full monoidal
subcategory of Uq(so(N))-mod generated by V and S. (See, for example, [Lus10, Ch. 32].) By
Proposition 4.6, they also yield a braiding on the corresponding subcategory of Uq(N)-mod. The
relations (2.5) and the first three relations in (2.1) follow immediately. The final two relations in
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(2.1) also follow from this braided structure. Indeed, it follows from the property of a braided
monoidal category that

F

( )
= F

( )
.

Composing on the bottom with F
( )

then shows that the fourth equality in (2.1) holds for black
strands. The verification for other colours of the strands, as well as the last equality in (2.1), is
analogous.

The verification of (2.2) is standard. The verification of (2.3) is also standard, dating back to the
study of the surjection of the Birman–Murakami–Wenzl algebra onto the endomorphism algebra of
V ⊗2. See, for example, [CP95, Th. 10.2.5].

Next, we consider the relations (2.4). Since S is a simple self-dual module, we have

dimHomUq(N)(S
⊗2, triv) = 1.

Thus,
F
( )

= σNΦS ◦ TS,S = cSΦS = F ( )

for some cS ∈ k. Then we compute

ΦS ◦ TS,S(x∅, x∅∁)
(4.38)
= q−

n
4 ΦS(x∅∁ , x∅)

(5.25)
= (−1)n(N+1)q−

n
4

n∏
i=1

(−1)iq−ρi = σNq
−n

4
−
∑n

i=1 ρi .

When N = 2n, we have

−n
4
−

n∑
i=1

ρi
(4.29)
= −n

4
−

n∑
i=1

(i− 1) = −n
4
− n(n− 1)

2
= −n(2n− 1)

4
=
N(1−N)

8
.

On the other hand, when N = 2n+ 1, we have

−n
4
−

n∑
i=1

ρi
(4.30)
= −n

4
−

n∑
i=1

(
i− 1

2

)
= −n

4
− n2

2
=
N(1−N)

8
.

Since ΦS(x∅, x∅∁) = 1, it follows that cS = q
N(1−N)

8 = t, verifying that F respects the first relation
in (2.4). Similarly, since V is a simple self-dual module, we have

F
( )

= ΦV ◦ TV,V = cΦV = F ( )

for some cV ∈ k. Then we compute

ΦV ◦ TV,V (vn ⊗ v−n)
(4.39)
= q−1ΦV (v−n ⊗ vn)

(4.31)
= q−2ρn−1ΦV (vn ⊗ v−n).

It follows from (4.29) and (4.30) that cV = −2ρn − 1 = 1 −N = κ2, verifying that F respects the
second relation in (2.4).

Now consider the relation (2.6). The image under F of the left-hand side is the Uq(N)-module
homomorphism S → S ⊗ V given by

xJ 7→
∑
v∈BV
x∈BS

ΦS

(
xJ , τ(v ⊗ x)

)
x∨ ⊗ v∨

(6.8)
=

(6.10)

∑
i∈I

I⊆{1,2,...,n}

ΦS

(
xJ , τ(v

∨
i ⊗ x∨I )

)
(x∨I )

∨ ⊗ (v∨i )
∨

(6.8)
=

(6.10)
σN

∑
i∈I

I⊆{1,2,...,n}

∏
j∈I

qρj

∏
j /∈I

q−ρj

 q−2ρiΦS

(
xJ , τ(v

∨
i ⊗ x∨I )

)
xI ⊗ vi.
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Now, if 1 ≤ i ≤ n, then ΨS

(
xJ , τ(v

∨
i ⊗ x∨I )

)
= 0 unless i ∈ I and J = I \ {i}, and in this case

(6.15)

∏
j∈I

qρj

∏
j /∈I

q−ρj

 q−2ρi =

∏
j∈J

qρj

∏
j /∈J

q−ρj

 .

Similarly, if −n ≤ i ≤ −1, then ΨS

(
xJ , τ(v

∨
i ⊗x∨I )

)
= 0 unless −i /∈ I and J = I ∪{−i}, and in this

case (6.15) again holds, noting that ρ−i = −ρi. The equality (6.15) also clearly holds when i = 0.
Thus, it follows from (6.8) that the image under F of the left-hand side of (2.6) is given by

xJ 7→
∑
i∈I

I⊆{1,2,...,n}

ΦS

(
(x∨J )

∨, τ(v∨i ⊗ x∨I )
)
xI ⊗ vi =

∑
i∈I

I⊆{1,2,...,n}

ΦS

(
τ(v∨i ⊗ x∨I ), xJ

)
xI ⊗ vi,

which is precisely the image under F of the right-hand side of (2.6).
Next, we prove (2.7). Since, by Lemma 4.8, dimHomUq(N)(S ⊗ V, S) = 1, we have

(6.16) F

( )
= cF

( )
for some c ∈ k. We determine c by computing the image of x∅ ⊗ v−n under both sides of (6.16).
For the left-hand side, we have, using (4.38),

x∅ ⊗ v−n
TS,V7−−−→ q−

1
2 v−n ⊗ x∅

τ7−→ q−
1
2ψ†

nx∅
(5.21)
= q−ρn− 1

2x{n}.

For the right-hand side, we have

x∅⊗v−n
1S⊗1V ⊗Φ∨

S7−−−−−−−→
∑
I

x∅⊗v−n⊗xI⊗x∨I
1S⊗τ⊗1S7−−−−−−→

∑
I

x∅⊗ψ†
nxI⊗x∨I

ΦS⊗1S7−−−−→
∑
I

ΦS(x∅, ψ
†
nxI)x

∨
I .

Since ΦS(x∅, ψ
†
n, xI) = 0 unless I = {n}∁, we have

x∅ ⊗ v−n 7→ ΦS

(
x∅, ψ

†
nx{n}∁

)
x∨{n}∁

(5.21)
= ΦS

(
x∅, x∅∁

)
x∨{n}∁

(5.25)
=

(6.7)
(−1)nNx{n}.

Thus, c = (−1)nNq−ρn− 1
2

(4.29)
=

(4.30)
(−1)nNq(1−N)/2 = κ, verifying that F respects (2.7).

The fact that F respects (2.8) follows immediately from the definition (5.24) of τ and the relation
(5.1) defining the quantum Clifford algebra.

Finally, we consider the relations (2.9). We have

F
( )

=
∑
I

ΦS(xI ⊗ x∨I )
(6.8)
=
∑
I

σN

(∏
i∈I

q−ρi

)(∏
i/∈I

qρi

)
= σN

n∏
i=1

(qρi + q−ρi) = dS

and
F
( )

=
∑
i∈I

ΦV (vi ⊗ v∨i )
(6.10)
=

∑
i∈I

q2ρi
(4.29)
=

(4.30)
[N − 1] + 1 = dV.

This completes the proof of the existence part of the theorem. The uniqueness follows from the
fact that the images of , , , and must be the inverses of the images of , , , and

, respectively, while the images of the cups must be as in (6.14) by the same argument given at
the end of the proof of [MS24, Th. 6.1]. □

Remark 6.2. The images under the incarnation functor of the relations (2.19) are

=
(−1)Nn

q
N
2
−1 + q1−

N
2

(
q−1/2 + q1/2

)
,
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=
(−1)Nn

q
N
2
−1 + q1−

N
2

(
q−1/2 + q1/2

)
.

At q = 1, this recovers [MS24, (5.14)]. The image of the skein relation (2.21) is

− = (−1)Nn q1/2 − q−1/2

q
N
2
−1 + q1−

N
2

(
−

)
.

7. Fullness of the incarnation functor

In the current section, we prove that the incarnation functor of Theorem 6.1 is full. Throughout
this section, we assume that k = C(q±

1
4 ) and that σN , t, κ, and dS are given by (6.1) and (6.2).

Recall the convention that ψ−i = ψ†
i and Ψ−i = Ψ†

i for 0 ≤ i ≤ n.

Lemma 7.1. We have

(7.1) F
( )

: xI ⊗ vi 7→ (−1)Nnq|{j /∈I:j>|i|}|ΨixI , i ∈ I, I ⊆ {1, 2, . . . , n}.

Proof. We compute that

F
( )

= F

( )
is the map

xI ⊗ vi 7→
∑
J

xI ⊗ vi ⊗ xJ ⊗ x∨J 7→
∑
J

xI ⊗ ψixJ ⊗ x∨J 7→
∑
J

ΦS(xI , ψixJ)x
∨
J

(5.17)
=

(5.20)

∑
J

qρi+|{j∈J :j>|i|}|ΦS(xI ,ΨixJ)x
∨
J

(5.26)
= (−1)Nnq|{j /∈I:j>|i|}|

∑
J

ΦS(ΨixI , xJ)x
∨
J

= (−1)Nnq|{j /∈I:j>|i|}|ΨixI .

where, in the second equality, we used the fact that ΦS(xI ,ΨixJ) = 0 unless I = J∁ ⊔ {i}. □

Lemma 7.2. We have

(7.2)
F
( )

: xI ⊗ xJ 7→ (−1)Nn
(
q

N−2
2 + q

2−N
2

)
BN (xI ⊗ xJ), where

BN =
∑
i∈I

(q + 1)−δi,0ω>|i|Ψi ⊗ ω−1
>|i|Ψ−i ∈ Clq(N)⊗ Clq(N).

Proof. Using (5.24) and (7.1), we compute that

F
( )

= F
( )

is the map

xI ⊗ xJ
(6.9)7−−−→ (q2−N + 1)

∑
i∈I

q2δi>0ρi(q + 1)−δi,0xI ⊗ vi ⊗ v−i ⊗ xJ

7→ (−1)Nn(q2−N + 1)
∑
i∈I

q2δi>0ρi+|{j /∈I:j>|i|}|(q + 1)−δi,0ΨixI ⊗ ψ−ixJ

(5.17)
= (−1)Nn(q2−N + 1)

∑
i∈I

qρ|i|+|{j /∈I:j>|i|}|(q + 1)−δi,0ΨixI ⊗ ω−1
>|i|Ψ−ixJ

(5.20)
= (−1)Nn(q2−N + 1)

∑
i∈I

qρ|i|+n−|i|(q + 1)−δi,0ω>|i|ΨixI ⊗ ω−1
>|i|Ψ−ixJ
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(4.29)
=

(4.30)
(−1)Nn

(
q

N−2
2 + q

2−N
2

)∑
i∈I

(q + 1)−δi,0ω>|i|ΨixI ⊗ ω−1
>|i|Ψ−ixJ . □

The element BN is denoted C in [Wen20, (3.6), (3.9)], although our conventions differ from those
of [Wen20]. See Remark 2.13. Note that

(7.3) B0 = 0, B1 = (q + 1)−1, B2 = Ψ1 ⊗Ψ†
1 +Ψ†

1 ⊗Ψ1.

For N ≥ 2, let
S1 := spank{xI : n ∈ I ⊆ {1, 2, . . . , n}} ⊆ S.

When N ≥ 5, we identify Uq(N − 2) with the subalgebra of Uq(N) generated by ei, fi, k±1
i ,

1 ≤ i ≤ n − 1, and, if N = 2n, by σ. We can then restrict Uq(N)-modules to Uq(N − 2)-modules.
For N ≤ 4, we define the restriction as follows:

• For a Uq(4)-module, both k1 and k2 act diagonally with eigenvalues in qZ. Thus, we can
define the restriction to Uq(2) by letting k ∈ Uq(2) act by (k1k

−1
2 )

1
2 , which acts diagonally

with eigenvalues in q
1
2
Z. The action of σ ∈ Uq(2) is the same as the action of σ ∈ Uq(4).

• For a Uq(3)-module, we define the restriction to Uq(1) by letting ξ act by 1 on eigenvectors
of k1 with eigenvalue in qZ and by −1 on eigenvectors with eigenvalue in q

1
2
+Z.

• We identify Uq(0) with the subalgebra of Uq(2) generated by σ. We then have usual restric-
tion of modules.

With the above conventions, for all N ≥ 2, the action of Uq(N − 2) leaves S1 invariant and S1 is
isomorphic to the spin module of Uq(N − 2).

Lemma 7.3. For N ≥ 2 and x ∈ S1 ⊗ S1, we have BNx = BN−2x.

Proof. Suppose I, J ∈ {1, 2, . . . , n} and n ∈ I, J . Then

ΨnxI = 0 = ΨnxJ , ω±1
n xI

(5.20)
= q∓1xI , ω±1

n xJ
(5.20)
= q∓1xJ .

Thus, if N = 2n+ 1,

BN (xI ⊗ xJ) =

n∑
i=−n

(q + 1)−δi,0

 n∏
j=|i|+1

ωj

ΨixI ⊗

 n∏
j=|i|+1

ω−1
j

Ψ−ixJ

=
n−1∑

i=1−n

(q + 1)−δi,0

 n−1∏
j=|i|+1

ωj

ΨixI ⊗

 n−1∏
j=|i|+1

ω−1
j

Ψ−ixJ = BN−2(xI ⊗ xJ).

The proof in the case N = 2n is analogous; one simply omits the i = 0 term in the above sums. □

Proposition 7.4. Suppose N = 2n + 1, and recall the decomposition (4.40). For 1 ≤ k ≤ n + 1,
the operator BN acts on the summand Lq(ϵn + · · ·+ ϵk) as scalar multiplication by

(−1)k−1(q + 1)−1([k − 1] + [k]).

Proof. We induct on n. When n = 0, we have BN = (q + 1)−1 by (7.3). Now suppose n ≥ 1
and let λk be the eigenvalue of BN on Lq(ϵn + · · · + ϵk). If k ≤ n, then the highest weight
vector of Lq(ϵn + · · · + ϵk) lies in S1 ⊗ S1 and is a highest weight vector for the simple module
Lq(ϵn−1 + · · · + ϵk) of Uq(N − 2). By Lemma 7.3 and our inductive hypothesis, this implies that
λk = (−1)k−1(q + 1)−1([k − 1] + [k]).



THE QUANTUM SPIN BRAUER CATEGORY 35

The image under F of the left-hand side of (3.25) is the quantum trace of BN . (See, for example,
[SW24, Lem. 7.1].) Therefore,

0
(3.25)
=

n+1∑
k=1

λk dimq Lq(ϵn + · · ·+ ϵk)
(4.42)
=

n+1∑
k=1

λk

([
2n

n− k + 1

]
+

[
2n
n− k

])
.

Thus, λn+1 is uniquely determined by λ1, . . . , λn. Hence, it suffices to prove the identity
n+1∑
k=1

(−1)k−1([k − 1] + [k])

([
2n

n− k + 1

]
+

[
2n
n− k

])
= 0,

where we adopt the convention that [k] = 0 =

[
2n
k

]
when k < 0. For this, we compute

n+1∑
k=1

(−1)k−1([k− 1] + [k])

([
2n

n− k + 1

]
+

[
2n
n− k

])
=

n+1∑
k=1

(−1)k[k]

([
2n

n− k − 1

]
−
[

2n
n− k + 1

])

=
n∑

k=0

(−1)k([k + 1]− [k − 1])

[
2n
n− k

]
=

[
2n
n

]
+

n∑
k=1

(−1)k
(
qk + q−k

)[
2n
n− k

]

= (−q)−n
2n∑
k=0

(−q)k
[
2n
k

]
= 0,

where the last equality follows from evaluating the generating function (4.5), with m = 2n, at
x = −q. □

Proposition 7.5. If m ≥ 2, then

(7.4)
m∑

k=−m

([
2m− 1
m− k − 1

]
+

[
2m− 1
m− k

])
[k]2 = ([2m− 1] + 1)

m−2∏
j=1

(qj + q−j)2,

where we interpret
[

2m− 1
m− k − 1

]
and

[
2m− 1
m− k

]
as zero when k = m and k = −m, respectively.

Proof. For f(x) ∈ k[x±1], define Df(x) = f(qx)−f(q−1x)
q−q−1 . Let

F (x) =
m∑

k=−m

([
2m− 1
m− k − 1

]
+

[
2m− 1
m− k

])
x−k (4.5)

= x−m(1 + x)
2m−1∏
j=1

(1 + q2j−2mx).

Then the left hand side of (7.4) is equal to (D2F )(1). Since

(D2F )(1) =
F (q2)− 2F (1) + F (q−2)

(q − q−1)2

=
1

(q − q−1)2

(
q−2m(1 + q2)(1 + q2m−2)(1 + q2m)− 4(1 + q2−2m)(1 + q2m−2)

+ q2m(1 + q−2)(1 + q−2m)(1 + q2−2m)
) 2m−2∏

j=2

(
1 + q2j−2m

)
= 2

(qm−1 + q1−m)(qm − q−m)

q − q−1

2m−2∏
j=2

qj−m
(
qm−j + qj−m

)
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= 2([2m− 1] + 1)

2m−2∏
j=2

(qm−j + qj−m)

= 4([2m− 1] + 1)
m−2∏
j=1

(qj + q−j)2,

the result follows. □

Proposition 7.6. Suppose N = 2n, and recall the decomposition (4.41). For 2 ≤ k ≤ n + 1, the
operator BN acts on the two simple Uq(N)-submodules of Ind(Lq(ϵn + ϵn−1 + · · · + ϵk)) as scalar
multiplication by [k − 1] and −[k − 1]. Furthermore, it acts as zero on the k = 1 summand.

Proof. The proof is similar to the proof of Proposition 7.4. We induct on n. The case n = 0 follows
immediately from (7.3). For n = 1, the k = 2 summand is spanned by x∅ ⊗ x{1} and x{1} ⊗ x∅, as
can be seen by weight considerations. Then the result follows from the fact that

B2

(
x∅ ⊗ x{1} ± x{1} ⊗ x∅

) (7.3)
= ±

(
x∅ ⊗ x{1} ± x{1} ⊗ x∅

)
and

B2 (x∅ ⊗ x∅)
(7.3)
= 0

(7.3)
= B2

(
x{1} ⊗ x{1}

)
.

Now suppose n ≥ 2, and let λk, µk be the eigenvalues of BN acting on the Uq(N)-submodules
of Ind(Lq(ϵn + · · · + ϵk)). When k = 1, we set λ1 = µ1 = 0. As in the proof of Proposition 7.4,
Lemma 7.3 and the induction hypothesis imply, without loss of generality, that λk = [k− 1] = −µk
for 1 ≤ k ≤ n.

It follows from (4.19) that the two simple submodules of Lq(ϵn + · · ·+ ϵk), 2 ≤ k ≤ n, have the
same quantum dimension. Thus,

0
(3.25)
=

n+1∑
k=1

λk + µk
2

dimq Lq(ϵn + · · ·+ ϵk) =
λn+1 + µn+1

2
,

where the last equality follows from the induction hypothesis and the fact that dimq Lq(0) = 1.
Thus, λn+1 = −µn+1.

The image under F of the left-hand side of (3.26) is the quantum trace of B2
N . Thus, by the

quantum dimension formula (4.42) and the induction hypothesis, we have

λ2n+1 + µ2n+1 +

n−1∑
k=1−n

([
2n− 1
n− k − 1

]
+

[
2n− 1
n− k

])
[k]2

(3.26)
= dVd

2
S

(6.2)
=

(6.4)
4([2n− 1] + 1)

n−1∏
j=1

(qj + q−j)2.

By Proposition 7.5, it follows that λ2n+1+µ
2
n+1 = 2[n]2. Thus, without loss of generality, λn+1 = [n]

and µn+1 = −[n]. □

Corollary 7.7. If N = 2n, then the eigenvalues of BN are [i], i ∈ Z, −n ≤ i ≤ n.

We define a barbell to be any element of the form 1⊗t ⊗BN ⊗ 1r−t−2 ∈ Clq(N)⊗r, 0 ≤ t ≤ r− 2,
r ≥ 2. The action of a barbell yields an element of EndUq(N)(S

⊗r).

Lemma 7.8. The action of the barbell BN generates EndUq(N)(S ⊗ S).

Proof. This follows from the fact that, by Proposition 7.4 and Corollary 7.7, the operator BN acts
on the simple summands in the decompositions (4.40) and (4.41) by pairwise distinct scalars. □

Theorem 7.9. Suppose r, r1, r2 ∈ N.
(a) The incarnation functor F induces a surjection

HomQSB(N)(S
⊗r1 , S⊗r2) ↠ HomUq(N)(S

⊗r1 , S⊗r2).
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(b) The algebra EndUq(N)(S
⊗r) is generated by barbells.

Proof. The proof is the same as that of [MS24, Th. 7.8]. In order to run this argument, we need
the following facts:

• the barbell generates EndUq(N)(S ⊗ S), which is Lemma 7.8,
• the category Uq(N)-mod is semisimple, which is Proposition 4.4,
• restricting from Uq(N) to Uq(N − 2) takes the barbell to the barbell, which is Lemma 7.3.

□

Theorem 7.10. The incarnation functor F is full.

Proof. The proof is analogous to that of [MS24, Th. 7.9]. The only difference is the diagrammatic
computation appearing there. In the quantum setting, this becomes

0
(3.20)
=

(3.11)
(2.18)

q − − dV
q − q−1

1 + qN

(2.8)
= (q + q−1) −

(
qN−1 − q1−N + q − q−1

1 + qN
+ q1−N + q−1

)
(2.9)
= (q + q−1) − 2dS

q + qN−1

1 + qN
.

Therefore

= 2dS
q + qN−1

(1 + qN )(q + q−1)
.

Then one replaces the D in the last line in the proof of [MS24, Th. 7.9] with 2dS
q+qN−1

(1+qN )(q+q−1)
. □

8. Essential surjectivity of the incarnation functor

Let Kar(QSB(N)) be the additive Karoubi envelope (that is, the idempotent completion of the
additive envelope) of QSB(N). Since Uq(N)-mod is additive and idempotent complete, F induces a
monoidal functor

Kar(F) : Kar
(
QSB(N)

)
→ Uq(N)-mod.(8.1)

Our goal in this final section is to show that Kar(F) is essentially surjective. Our arguments will
involve the following subcategory of the quantum spin Brauer category.

Definition 8.1. Suppose dS ∈ k and q, t, κ ∈ k×, such that q − q−1 ∈ k×. We define QSB ′ =
QSB ′(q, t, κ, dS) to be the k-linear monoidal subcategory of QSB(q, t, κ, dS) generated by the objects
S and V and the morphisms

, , , , , .

Note that, by (2.19), the subcategory QSB ′ also contains the morphisms and as long as
qκ2 + 1 is invertible (which we will assume below). Then, using cups and caps to rotate crossings,
we see that QSB ′ contains all blue-blue and blue-black crossings. Thus, the essential point is that
we omit the crossings and .

For the remainder of this section we assume that k is a field and q, t, κ ∈ k× such that q is not a
root of unity and (3.1) is satisfied. The next result shows that all closed diagrams in QSB ′ can be
reduced to a multiple of the empty diagram 11. Its proof is similar to that of [MS24, Prop. 5.9].

Proposition 8.2. We have EndQSB′(1) = k11.
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Proof. We freely use isotopy invariance of diagrams. We first prove that, for r ∈ N,

(8.2) r = r +A,

where A is a linear combination of diagrams with fewer than r blue strands attached to the black
circle. Since (8.2) trivially holds when r ∈ {0, 1}, we assume r ≥ 2. Let ≡ denote equivalence
modulo linear combinations of diagrams with fewer than r blue strands attached to the black circle.
Then we have

r+1
(3.5)
≡

(2.18)

1

[r + 1]

qr r − [r] r−1
r

r

 (2.8)
≡

(3.9)

qr + q−1[r]

[r + 1]
r = r ,

and so (8.2) holds for all r ∈ N by induction.
We now prove that any closed diagram is equal to a multiple of the empty diagram. We proceed

by induction on the number of trivalent vertices in the diagram. Suppose we have a closed diagram
with at least one trivalent vertex. Consider the black curve that is part of that trivalent vertex.
Since every trivalent vertex has exactly two black strings incident to it, this curve is part of a loop.
By the definition of QSB ′, we may assume that this curve has no self-intersections and does not
cross any other strands. Using (2.1) and (2.14), we may move any blue strings in the interior of
the loop to the exterior. Thus, we may assume that the interior of the loop is empty. Let r be the
number of trivalent vertices on this loop. Since

0
(3.20)
= r

(8.2)
≡ r ,

we can write our diagram as a linear combination of diagrams with fewer trivalent vertices, com-
pleting the proof of the inductive step.

We have now reduced to the case of diagrams with no trivalent vertices. In this case, the relations
(2.1) and (2.4) suffice to rewrite our diagrams as a disjoint union of circles, which are evaluated as
scalars by (2.9). □

Proposition 8.3. For all r, s ∈ N, the spaces HomQSB′(V⊗r,V⊗s) and HomQSB′(V⊗r ⊗ S,V⊗s ⊗ S)
are finite dimensional.

Proof. As in the proof of Proposition 8.2, closed diagrams can be reduced to a scalar multiple of
the empty diagram. Thus, HomQSB′(V⊗r,V⊗s) is spanned by diagrams with no loops. In particular,
it is spanned by diagrams with no black strands. Using (2.1), (2.3), (2.4) and (2.10), it is then a
standard skein theory argument in the theory of tangles to show that this space is finite dimensional.

Similarly, HomQSB′(V⊗r ⊗ S,V⊗s ⊗ S) is spanned by diagrams with no loops. In particular, it is
spanned by diagrams that have a single black string running from the bottom of the diagram to the
top that does not intersect itself. Using (2.1) and (2.14), we can move all blue strings to the left of
the black string.

We now claim that we can remove all instances of a blue string being incident to the black string
twice. Using (2.1), (2.3), (2.4) and (2.10) we can reduce the case to where the picture locally looks
like the following:

...
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We then use (2.8) and (2.16) to reduce to the case where there are no strands in the interior of the
blue-black loop. Then we can use (2.18) to simplify the diagram.

Now we are in a position where we can assume that no blue string is incident to the black string
more than once. Furthermore, using (2.1), (2.3), (2.4) and (2.10), we may assume that no two
blue strings cross more than once and no blue strings intersect themselves (as in the standard skein
theory argument mentioned above). An example of such a diagram for r = 6 and s = 5 is the
following:

Since the number of diagrams satisfying these conditions is finite, the result follows. □

For the remainder of this section, we suppose that N ∈ N, k = C(q±
1
4 ), and that t, κ, and dS

are given by (6.2). Let

(8.3) F′ : QSB ′ → Uq(N)-mod

be the restriction of the functor F to the subcategory QSB ′.

Lemma 8.4. The functor F′ is full.

Proof. Since none of the arguments in Section 7 used the crossings or , this follows from
Theorem 7.10. □

Theorem 8.5. The functors Kar(F′) and Kar(F) are essentially surjective.

Proof. Since Uq(N)-mod is semisimple by Proposition 4.4, it suffices to show that every finite-
dimensional simple Uq(N)-module is in the essential image of Kar(F′), which also implies it is in
the essential image of Kar(F). Let M be a finite-dimensional simple Uq(N)-module. Let s = 0 if the
components of the highest weight of M are integers and let s = 1 otherwise (i.e., if the components
of the highest weight are half-integers). Then M is isomorphic to a summand of V ⊗r ⊗ S⊗s for
some r ∈ N. By Lemma 8.4, the idempotent eM in EndUq(N)(V

⊗r ⊗ S⊗s) projecting onto M is in
the image of

F′ : EndQSB′(V⊗r ⊗ S⊗s) ↠ EndUq(N)(V
⊗r ⊗ S⊗s).

By Proposition 8.3, EndQSB′(V⊗r⊗S⊗s) is finite dimensional. Hence, we can lift eM to an idempotent
e ∈ EndQSB′(V⊗r ⊗ S⊗s) such that F(e) = F′(e) = eM . Thus, M is in the essential image of F′ as
desired. □

Remark 8.6. The non-quantum analogue of Theorem 8.5 is [MS24, Th. 8.1]. There is a gap in the
proof of [MS24, Th. 8.1], where the lifting of idempotents is not justified, since the morphism spaces
in the spin Brauer category may be infinite dimensional. The strategy of the proof of Theorem 8.5,
which also applies to the non-quantum setting, fixes this gap.

It is straightforward to verify that QSB ′ is a spherical pivotal category, hence so is its idempotent
completion Kar(QSB ′). (We refer the reader to [Sel11, §4.4.3] for the definition of a spherical
pivotal category.) In any spherical pivotal category C, we have a trace map Tr:

⊕
X∈C EndC(X) →

EndC(1). In terms of string diagrams, this corresponds to closing a diagram off to the right or left:

(8.4) Tr

(
f

)
= f = f ,

where the second equality follows from the axioms of a spherical category. We say that a morphism
f ∈ HomC(X,Y ) is negligible if Tr(f ◦ g) = 0 for all g ∈ HomC(Y,X). The negligible morphisms
form a two-sided tensor ideal N of C, and the quotient C/N is called the semisimplification of C.
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Theorem 8.7. The kernel of the functor Kar(F′) is equal to the tensor ideal of negligible morphisms
of Kar(QSB ′). The functor Kar(F′) induces an equivalence of categories from the semisimplification
of Kar(QSB ′) to Uq(N)-mod.

Proof. By Lemma 8.4 and Theorem 8.5 the functor Kar(F′) is full and essentially surjective. It
follows from Proposition 8.2 and [SW24, Prop. 6.9] that its kernel is the tensor ideal of negligible
morphisms. □

Theorem 8.7 states that QSB ′ is an interpolating category for the categories of Uq(N)-modules.
The reason we need to consider the subcategory QSB ′ is that the proof of Theorem 8.7 relies on
Proposition 8.2. In the larger category QSB, it does not seem possible to reduce all closed diagrams
to a multiple of the empty diagram due to the possible presence of nontrivial links in the black
strings. In fact, we could have worked with the smaller category QSB ′ throughout the paper. We
have chosen to work with the larger category QSB because it has the nice property of being braided
monoidal.

Appendix A. Proof of Proposition 5.6

Our goal is to show that the map τ , defined in (5.24), is a homomorphism of Uq(N)-modules.
We first need a technical lemma.

Lemma A.1. For 2 ≤ i ≤ n, we have

ΨiΨ
†
i−1ψi−1 = ψiωiω

−1
i−1 + ψi−1ΨiΨ

†
i−1,(A.1)

Ψi−1Ψ
†
iψi = ψi−1 + q−1ψiΨi−1Ψ

†
i .(A.2)

Proof. To prove (A.1), we compute

ΨiΨ
†
i−1ψi−1

(5.17)
= qρi−1ΨiΨ

†
i−1ω

−1
>i−1Ψi−1

(5.13)
(5.14)
= qρi−1ω−1

>i−1ΨiΨ
†
i−1Ψi−1ω

−1
i−1

(5.10)
= qρi−1ω−1

>i−1Ψi(1−Ψi−1Ψ
†
i−1)ω

−1
i−1

(5.13)
=

(5.10)
ψiωiω

−1
i−1 + ψi−1ΨiΨ

†
i−1,

where we used the fact that ρi−1 + 1 = ρi, by (4.29) and (4.30). To prove (A.2), we compute

Ψi−1Ψ
†
iψi

(5.17)
= qρiΨi−1Ψ

†
iω

−1
>iΨi

(5.14)
= qρiω−1

>iΨi−1Ψ
†
iΨi

(5.13)
= ψi−1Ψ

†
iΨi

(5.10)
= ψi−1(1−ΨiΨ

†
i )

(5.10)
= ψi−1 + qρi−1ω−1

>i−1ΨiΨi−1Ψ
†
i

(5.14)
= ψi−1 + q−1ψiΨi−1Ψ

†
i . □

To prove Proposition 5.6, we need to show that

aτ(v ⊗ x) = τ(∆(a)(v ⊗ x)), a ∈ Uq(N), v ∈ V, x ∈ S.

Using (4.11), (4.14) and (5.24), we see that it suffices to show that, for 1 ≤ i ≤ n, j ∈ I,

eiψj = eivjki + ψjei,(A.3)

fiψj = fivj + k−1
i vjfi,(A.4)

k±1
i ψj = k±1

i vjk
±1
i ,(A.5)

σψj = σvjσ,(A.6)

where v̄ denotes the image in Clq(N) of v ∈ V , and both sides of (A.3) to (A.5) are to be interpreted
as elements of Clq(N), using Proposition 5.5.
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Proof of (A.3). If 2 ≤ i ≤ n, 0 ≤ j ≤ n, j ̸= i− 1, we have

eiψj
(5.17)
= qρjΨiΨ

†
i−1ω

−1
>jΨj

(5.14)
= qρjω−1

>jΨiΨ
†
i−1Ψj

(5.10)
= qρjω−1

>jΨjΨiΨ
†
i−1

(5.17)
=

(5.13)
ψjei.

Since eivj = 0 by (4.22), the equation (A.3) follows.
If 2 ≤ i ≤ n, 0 < j ≤ n, j ̸= i, we have

eiψ−j
(5.17)
= q−ρjΨiΨ

†
i−1ω

−1
>jΨ

†
j

(5.14)
= q−ρjω−1

>jΨiΨ
†
i−1Ψ

†
j

(5.10)
= q−ρjω−1

>jΨ
†
jΨiΨ

†
i−1

(5.17)
=

(5.13)
ψ−jei,

where we have used the fact that Ψ†
i−1Ψ

†
j = 0, by (5.10), when j = i− 1. Since eivj = 0 by (4.22),

the equation (A.3) follows.
The case i = 1, j ̸= 0 is similar to the above cases.
Now suppose 2 ≤ i ≤ n and j = i− 1. Then

eiψi−1
(5.17)
= ΨiΨ

†
i−1ψi−1

(A.1)
= ψiωiω

−1
i−1 + ψi−1ΨiΨ

†
i−1

(4.22)
= eivi−1ki + ψi−1ei.

If 2 ≤ i ≤ n, j = −i, we have

eiψ−i
(5.17)
= q−ρiΨiΨ

†
i−1ω

−1
>iΨ

†
i

(5.13)
=

(5.14)
q−ρiω−1

>iΨiΨ
†
i−1Ψ

†
i

(5.10)
= −q−ρiω−1

>i (1−Ψ†
iΨi)Ψ

†
i−1

(5.13)
= −q−ρiω−1

>iΨ
†
i−1 + q−ρiω−1

>iΨ
†
iΨiΨ

†
i−1

(5.17)
= −q−ρiω−1

>iΨ
†
i−1 + ψ†

i ei

(5.13)
=

(5.14)
−q−ρiω−1

>i−1Ψ
−1
i−1ωiω

−1
i−1 + ψ†

i ei
(5.17)
= −q−1ψ†

i−1ki + ψ†
i ei

(4.23)
= eiv−iki + ψ−iei.

Finally, we consider the case N = 2n+ 1, i = 1, j = 0. We have

e1ψ0
(5.17)
= Ψ1Ψ

†
0ω

−1
>0Ψ0

(5.13)
=

(5.14)
qω−1

>1Ψ1Ψ
†
0Ψ0

(5.17)
=

(5.10)
q

1
2ψ1,

ψ0e1
(5.17)
= ω−1

>0Ψ0Ψ1Ψ
†
0

(5.10)
= −ω−1

>0ψ1
(5.13)
= −ω−1

>1Ψ1
(5.17)
= −q−

1
2ψ1,

e1v0k1
(4.23)
= q

1
2 (q + 1)ψ1ω1

(5.13)
=

(
q

1
2 + q−

1
2

)
ψ1,

and so (A.3) follows. □

Proof of (A.4). If 2 ≤ i ≤ n, 0 ≤ j ≤ n, j ̸= i, we have

fiψj
(5.17)
= qρjΨi−1Ψ

†
iω

−1
>jΨj

(5.13)
=

(5.14)
qρj+δi−1,jω−1

>jΨi−1Ψ
†
iΨj

(5.10)
= qρjω−1

>jΨjΨi−1Ψ
†
i

(5.17)
= ψjfi.

Since fivj = 0 by (4.22), the equation (A.4) follows. If 2 ≤ i = j ≤ n, then

fiψi = Ψi−1Ψ
†
iψi

(A.2)
= ψi−1 + q−1ψiΨi−1Ψ

†
i

(4.22)
=

(4.25)
fivi + k−1

i vifi,

as desired.
If 2 ≤ i ≤ n, 0 < j ≤ n, j ̸= i− 1, we have

fiψ−j
(5.17)
= q−ρjΨi−1Ψ

†
iω

−1
>jΨ

†
j

(5.14)
=

(5.10)
q−ρjω−1

>jΨ
†
jΨi−1Ψ

†
i

(4.22)
(5.17)
= fiv−jψ−jfi,

as desired. We also have

fiψ1−i
(5.17)
= q−ρi−1Ψi−1Ψ

†
iω

−1
>i−1Ψ

†
i−1

(5.14)
=

(5.10)
q−1−ρi−1ω−1

>i−1Ψi−1Ψ
†
i−1Ψ

†
i

(5.10)
= q−1−ρi−1ω−1

>i−1(1−Ψ†
i−1Ψi−1)Ψ

†
i = q−ρiω−1

>i−1Ψ
†
i + q−1−ρi−1ω−1

>i−1Ψ
†
i−1Ψi−1Ψ

†
i
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(5.13)
= −q1−ρiω−1

>iΨ
†
i+q

−1−ρi−1ω−1
>i−1Ψ

†
i−1Ψi−1Ψ

†
i

(5.17)
= −qψ−i+q

−1ψ1−ifi
(4.22)
= fiv1−i+k

−1
i v1−ifi,

as desired.
Now suppose that N = 2n and i = 1. When j > 2, we have

f1ψj = Ψ†
1Ψ

†
2ψj

(5.17)
=

(5.14),(5.10)
ψjΨ

†
1Ψ

†
2 = ψjf1

(4.22)
=

(4.25)
f1ψj + k−1

1 vjf1.

When j = 2, we have

f1ψ2
(5.17)
= qΨ†

1Ψ
†
2ω

−1
>2Ψ2

(5.14)
=

(5.13)
ω−1
>1Ψ

†
1Ψ

†
2Ψ2

(5.10)
= ω−1

>1Ψ
†
1(1−Ψ2Ψ

†
2)

(5.17)
=

(5.10)
ψ†
1 + ω−1

>1Ψ2Ψ
†
1Ψ

†
2

(5.13)
=

(5.17)
ψ†
1 + q−1ψ2f1

(4.24)
= f1ψ2 + k−1

1 v2f1.

When j = 1, we have

f1ψ1
(5.17)
= Ψ†

1Ψ
†
2ω

−1
>1Ψ1

(5.14)
= q−1ω−1

>1Ψ
†
1Ψ

†
2Ψ1

(5.10)
= −q−1ω−1

>1Ψ
†
2(1−Ψ1Ψ

†
1)

(5.10)
=

(5.13)
−ω−1

>2Ψ
†
2 + q−1ω−1

>1Ψ1Ψ
†
1Ψ

†
2

(5.17)
= −qψ†

2 + q−1ψ1f1
(4.24)
=

(4.25)
f1v1 + k−1

1 v1f1.

When 2 < j ≤ n, we have

f1ψ−j
(5.17)
= q−ρjΨ†

1Ψ
†
2ω

−1
>jΨ

†
j

(5.14)
=

(5.10)
q−ρjω−1

>jΨ
†
jΨ

†
1Ψ

†
2

(5.17)
= ψ−jf1

(4.24)
=

(4.25)
f1v−j + k−1

1 v−jf1.

When j ∈ {1, 2}, we have

f1ψ−j
(5.17)
= q−ρjΨ†

1Ψ
†
2ω

−1
>jΨ

†
j

(5.14)
=

(5.10)
0

(5.10)
= q−ρj+1ω−1

>1Ψ
†
1Ψ

†
1Ψ

†
2

(5.17)
= qψ−1f1

(4.24)
=

(4.25)
f1v−j + k−1

1 v−jf1.

Now suppose that N = 2n+ 1 and i = 1. When j > 1, we have

f1ψj
(5.17)
= qρjΨ0Ψ

†
1ω

−1
>jΨj

(5.14)
=

(5.10)
qρjω−1

>jΨjΨ0Ψ
†
1

(5.17)
= ψjf1

(4.24)
=

(4.25)
f1vj + k−1

1 vjf1.

When j = 1, we have

f1ψ1
(5.17)
=

(4.30)
q

1
2Ψ0Ψ

†
1ω

−1
>1Ψ1

(5.13)
=

(5.14)
q−

1
2ω−1

>0Ψ0Ψ
†
1Ψ1

(5.10)
= q−

1
2ω−1

>0Ψ0(1−Ψ1Ψ
†
1)

(5.17)
=

(5.10)
q−

1
2ψ0 + q−

1
2ω−1

>0Ψ1Ψ0Ψ
†
1

(5.13)
=

(5.17)
q−

1
2ψ0 + q−1ψ1f1

(4.24)
=

(4.25)
f1v1 + k−1

1 v1f1.

When j = 0, we have

f1ψ0
(5.17)
= Ψ0Ψ

†
1ω

−1
>0Ψ0

(5.14)
= q−1ω−1

>0Ψ0Ψ
†
1Ψ0

(5.10)
= −q−1ω−1

>0Ψ
†
1

(5.13)
=

(5.17)
−q

1
2ψ†

1,

f1ψ0
(4.24)
= −q

1
2 (q + 1)ψ†

1,

k−1
1 v0f1

(4.25)
= ψ0f1

(5.17)
= ω−1

>0Ψ0Ψ0Ψ
†
1

(5.10)
= ω−1

>0Ψ
†
1

(5.13)
= qω−1

>1Ψ
†
1

(5.17)
= q

3
2ψ†

1,

and (A.4) follows. When 2 ≤ j ≤ n, we have

f1ψ−j
(5.17)
= q−ρjΨ0Ψ

†
1ω

−1
>jΨ

†
j

(5.14)
=

(5.10)
q−ρjω−1

>jΨ
†
jΨ0Ψ

†
1

(5.17)
= ψ−jf1

(4.24)
=

(4.25)
f1v−j + k−1

1 v−jf1.

Finally, we have

f1ψ−1
(5.17)
= q−ρ1Ψ0Ψ

†
1ω

−1
>1Ψ

†
1

(5.14)
=

(5.10)
0

(5.10)
= q1−ρ1ω−1

>1Ψ
†
1Ψ0Ψ

†
1

(5.17)
= qψ−1f1

(4.24)
=

(4.25)
f1v−1 + k−1

1 v−1f1.
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□

Proof of (A.5). For 2 ≤ i ≤ n, 0 ≤ j ≤ n, we have

k±1
i ψj

(5.17)
= qρjω±1

i ω∓1
i−1ω

−1
>jΨj

(5.14)
= qρj±δi,j∓δi−1,jω−1

>jΨjω
±1
i ω∓1

i−1

(5.17)
= qδi,j∓δi−1,jψjω

∓1
i−1

(4.25)
= k±1

i ψjk
±1
i .

The case 2 ≤ i ≤ n, −n ≤ j < 0 is analogous.
For N = 2n, i = 1, and 0 ≤ j ≤ n, we have

k±1
1 ψj

(5.17)
= qρj±1ω±1

2 ω±1
1 ω−1

>jΨj
(5.14)
= qρ1±1±δj,1±δj,2ω−1

>jΨjω
±1
2 ω±1

1

(5.17)
= q±1±δj,1±δj,2ψjω

±1
2 ω±1

1

(4.25)
= k±1

1 ψjk
±1
1 .

The case N = 2n, i = 1, and −n ≤ j < 0 is analogous. The cases N = 2n+ 1, i = 1, and j ∈ I are
also similar. □

Proof of (A.6). For 2 ≤ j ≤ n, we have

σψj
(5.17)
=

√
−1qρj (Ψ1 −Ψ†

1)ω
−1
>jΨj

(5.14)
=

(5.10)
−
√
−1qρjω−1

>jΨj(Ψ1 −Ψ†
1)

(5.17)
= −ψjσ

(4.26)
= σvjσ.

The case −n ≤ j ≤ −2 is analogous. Finally, we compute

σψ1
(5.17)
=

√
−1(Ψ1 −Ψ†

1)ω
−1
>1Ψ1

(5.14)
=

(5.10)
−
√
−1ω−1

>1Ψ
†
1Ψ1

(5.10)
= −

√
−1ω−1

>1Ψ
†
1(Ψ1 −Ψ†

1)
(5.17)
= −ψ†

1σ
(4.26)
= σv1σ

and

σψ†
1

(5.17)
=

√
−1(Ψ1 −Ψ†

1)ω
−1
>1Ψ

†
1

(5.14)
=

(5.10)

√
−1ω−1

>1Ψ1Ψ
†
1

(5.10)
= −

√
−1ω−1

>1Ψ1(Ψ1 −Ψ†
1)

(5.17)
= −ψ1σ

(4.26)
= σv−1σ. □

This completes the proof of Proposition 5.6.
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